+  

اتحاد

 




مقدمه و معرفی


در ریاضیات اتحادها تساوی هایی هستند که به ازای هر مقدار عددی از دامنه خود که بجای متغییرهایشان قرار دهیم همواره برقرار باشند. به عنوان مثال تساوی          فقطx(x+1) =x^2+x برای هرعضو دامنه برقرار است. لذا این عبارت جبری یک اتحاد است، اما تساوی فقط برای x=1 برقرار است. پس این عبارت یک اتحاد نمی باشد. در واقع در مورد یک اتحاد در اصل به یک تساوی بدیهی چون 0=0 می رسیم.
به عنوان مثال در اتحاد مثال زده شده دو طرف ساده شده و تساوی 0=0 حاصل می شود.
به این ترتیب تفاوت میان یک اتحاد جبری و یک معادله جبری در این است که اتحاد جبری به ازای همه مقادیر دامنه برقرار است در صورتی که یک معادله جبری به ازای تعداد محدودی از اعضای دامنه(مجموعه جواب معادله) برقرار است.
عبارات زیر نمونه ای از اتحاد است:

 




اتحادهای مهم جبری


در میان اتحادهای جبری، برخی از اتحادها بسیار مهم و کاربردی می باشند و در حل معادلات، محاسبات جبری، تجزیه عبارت جبری و... بسیار کاربرد دارند. از این رو دانستن و به کاربردن آنها از اهمیت خاصی برخوردار است. در این قسمت به بررسی این اتحادهای مهم می پردازیم.

اتحاد مربع مجموع دو جمله

 

 


مثال:

 

 



اتحاد مربع تفاضل دو جمله

 

 


مثال:

 

 



اتحاد مکعب مجموع دو جمله

 

 


مثال:

 

 




 

اتحاد مربع سه جمله

 

 


مثال:

 

 



 

 



اتحاد مزدوج

 

 


مثال:

 

 

·        لازم به توضیح است اگر داشته باشیم a+b آنگاه عبارت a-b را مزدوج عبارت اول یعنی a+b می گویند.



اتحاد جمله مشترک

 

 


مثال:

 

 





اتحاد مجموع مکعبات دو جمله(اتحاد چاق و لاغر)

 

 


مثال:

 

 



تعمیم اتحاد مجموع مکعبات دو جمله(اتحاد چاق و لاغر)

 


پس می توان نتیجه زیر را بیان کرد:

 

 

·        لازم به توضیح است که این اتحاد فقط برای حالتی برقرار ست که توان n عدد طبیعی فرد باشد.


مثال:

 

 



اتحاد تفاضل مکعبات دو جمله(اتحاد چاق و لاغر)

 

 


مثال:

 

 




 

·         علاوه بر اتحاد های جبری ذکر شده هر عبارت دیگر که برای هر مقدار از دامنه برقرار باشد را نیز می توان به عنوان اتحاد دانست. به عنوان مثال از مهمترین این اتحاد ها، اتحاد های مثلثاتی می باشند.

 

نویسنده : زینب شعبانی تبار ; ساعت ۱:٥٦ ‎ب.ظ ; یکشنبه ۱٤ فروردین ،۱۳٩٠
تگ ها:
comment نظرات () لینک


+ سوالات ریاضی 1

سوالات درس ریاضی ١ را می توانید از این لینک ها دانلود کنید

www.international-iq./post-111665.html 

www.iran-forum.ir/thread-46238.html

www.chakavakdvd.com/p.php?id=1495

 

نویسنده : زینب شعبانی تبار ; ساعت ۱:٢٤ ‎ب.ظ ; یکشنبه ۱٤ فروردین ،۱۳٩٠
تگ ها:
comment نظرات () لینک


+ اتحاد ها در ریاضیات

  

اتحادها بسیار زیاد هستند اما چند اتحاد اصلی که پایه‌ی اتحادهای دیگر هستند بدین قرارند

مربع دو جمله ای

مربع سه جمله‌ای

مکعب مجموع دو جمله

مزدوج

اتحاد جمله مشترک

 مجموع و تفاضل مکعبات دوجمله

 

 اویلر(اولر)

 اتحاد لاگرانژ

نیوتونی

 

 

 

 

 

نویسنده : زینب شعبانی تبار ; ساعت ۱٢:۱۳ ‎ب.ظ ; یکشنبه ۱٤ فروردین ،۱۳٩٠
تگ ها:
comment نظرات () لینک


+ تاریخچه ریاضی

انسان اولیه نسبت به اعداد بیگانه بود و شمارش اشیاء اطراف خود را به حسب غریزه یعنی همانطور که مثلاً مرغ خانگی تعداد جوجه هایش را می داند انجام می داد اما به زودی مجبور شد وسیله شمارش دقیق تری بوجود آورد لذا به کمک انگشتان دست دستگاه شماری پدید آورد که مبنای آن ۶۰ بود. این دستگاه شمار که بسیار پیچیده می باشد قدیمی ترین دستگاه شماری است که آثاری از آن در کهن ترین مدارک موجود یعنی نوشته های سومری مشاهده می شود. سومریها که تمدنشان مربوط به حدود هزار سال قبل از میلاد مسیح است در جنوب بین النهرین یعنی ناحیه بین دو رود دجله و فرات ساکن بودند. آنها در حدود ۲۵۰۰ سال قبل از میلاد با امپراطوری سامی عکاد متحد شدند و امپراطوری و تمدن آشوری را پدید آوردند.
سه قرن اول ریاضیات یونانی که با تلاشهای اولیه در هندسه برهانی بوسیله تالس در حدود ۶۰۰ سال قبل از میلاد شروع شده و با کتاب برجسته اصول اقلیدس در حدود ۳۰۰ سال قبل از میلاد به اوج رسید، دوره‌ای از دستاوردهای خارق العاده را تشکیل می‌دهد.
در حدود ۱۲۰۰ سال قبل از میلاد بود که قبایل بدوی “دوریایی” با ترک دژهای کوهستانی شمال برای دستیابی به قلمروهای مساعدتر در امتداد جنوب راهی شبه جزیره یونان شدند و متعاقب آن قبیله بزرگ آنها یعنی اسپارت را بنا کردند. بخش مهمی از سکنه قبلی برای حفظ جان خود ، به آسیای صغیر و زایر یونانی و جزایر یونانی دریای اژه گریختند و بعدها در آنجا مهاجرنشنهای تجاری یونانی را برپا کردند. در این مهاجرنشینها بود که در قرن ششم (ق.م) اساس مکتب یونانی نهاده شد و فلسفه یونانی شکوفا شد و هندسه برهانی تولد یافت. در این ضمن ایران بدل به امپراطوری بزگ نظامی شده بود و به پیروزی از یک برنامه توسعه طلبانه در سال ۵۴۶ (ق.م) شهر یونیا و مهاجرنشینهای یونانی آسیای صغیر را تسخیر نمود. در نتیجه عده‌ای از فیلسوفان یونانی مانند فیثاغورث موطن خود را ترک و به مهاجرنشینهای در حال رونق جنوب ایتالیا کوچ کردند. مدارس فلسفه و ریاضیات در “کروتونا” زیر نظر فیثاغورث در “الیا” زیر نظر کسنوفانس ، زنون و پارمیندس پدید آمدند.
در حدود۴۸۰ سال قبل از میلاد آرامش پنجاه ساله برای آتنیها پیش آمد که دوره درخشانی برای آنان بود و ریاضیدانان زیادی به آتن جذب شدند. در سال ۴۳۱ (ق.م) با آغاز جنگ “پلوپونزی” بین آتنیهای و آسپارتها ، صلح به پایان رسید و با شکست آتنیها دوباره رکورد حاصل شد.

ظهور افلاطون و نقش وی در تولید دانش ریاضی

اگرچه با پایان جنگ پلوپرنزی مبادله قدرت سیاسی کم اهمیت تر شد، اما رهبری فرهنگی خود را دوباره بدست آورد. افلاطون در آتن یا حوالی آن و در سال ۴۲۷ (ق.م) که در همان سال نیز طاعون بزرگی شیوع یافت و یک چهارم جمعیت آتن را هلاک رد و موجب شکست آنها شد، به دنیا آمد، وی فلسفه را در آنجا زیر نظر سقراط خواند و سپس در پی کسب حکم عازم سیر و سفرهای طولانی شد. وی بدین ترتیب ریاضیات را زیر نظر تیودوروس در ساحل آفریقا تحصیل کرد. در بازگشت به آتن در حدود سال ۳۸۷ (ق.م) آکادمی معروف خود را تاسیس کرد.
تقریبا تمام کارهای مهم ریاضی قرن چهارم (ق.م) بوسیله دوستان یا شاگردان افلاطون انجام شده بود. آکادمی افلاطون به عنوان حلقه ارتباط ریاضیات فیثاغورثیان اولیه و ریاضیات اسکندریه در آمد. تاثیر افلاطون بر ریاضیات ، معلول هیچ یک از کشفیات ریاضی وی نبود، بلکه به خاطر این اعتقاد شورانگیز وی بود که مطالعه ریاضیات عالیترین زمینه را برای تعلیم ذهن فراهم می‌آورد و از اینرو در پرورش فیلسوفان و کسانی که می‌بایست دولت آرمانی را اداره کنند، نقش اساسی داشت. این اعتقاد ، شعار معروف او را بر سر در آکادمی وی توجیه می‌کند: “کسی که هندسه نمی‌داند، داخل نشود.” بنابراین به دلیل رکن منطقی و نحوه برخورد ذهنی نابی که تصور می‌کرد مطالعه ریاضیات در شخص ایجاد می‌کند، ریاضیات به نظر افلاطون از بیشترین اهمیت برخوردار بود، و به همین جهت بود که جای پر ارزش را در برنامه درس آکادمی اشغال می‌کرد. در بیان افلاطون اولین توضیحات درباره فلسفه ریاضی موجود هست.

ادامه دهندگان مسیر افلاطون

* ایودوکسوس که هم نزد آرخوتاس و هم نزد افلاطون درس خوانده بود، مدرسه‌ای در سینویکوس در آسیای صغیر تاسیس کرد.
* منایخموس از معاشرین افلاطون و یکی از شاگردان ایودوکسوس ، مقاطع مخروطی را ابداع کرد.
* دینوستراتوس ، برادر منایخموس، هندسه دانی ماهر و از شاگردان افلاطون بود.
* تیاتیتوس ، مردی با استعدادهای خیلی عادی که احتمالا قسمت اعظم مطالب مقاله‌های دهم و یازدهم اقلیدس را نیز به او مدیونیم، یکی از شاگردان تیودوروس بود.
* ارسطو گرچه ادعای ریاضیدانی نداشت ولی سازمان دهنده منطقی قیاسی و نویسنده آثاری در باب موضوعات فیزیکی بود. وی تسلط خارق العاده‌ای بر روشهای ریاضی داشت.

مسیرهای تکامل ریاضیات در یونان

در تکامل ریاضیات طی ۳۰۰ سال اول ، سه خط سیر مهم و متمایز را می‌توان تشخیص داد.
* ابتدا ، بسط مطالبی است که در اصول مدون شد، که با توانایی توسط فیثاغورثیان شروع شد و بعدها بقرط ، ایودوروس ، تیاتیتوس ، دیگران مطالبی به آن اضافه کردند.
* خط سیر دوم شامل بسط مفاهیمی است در رابطه با بینهایت کوچکها و روندهای حدی و مجموع یابی که تا بعد از اختراع حساب دیفرانسیل و انتگرال در دوارن معاصر به وضوح نهایی دست نیافتند. پارادوکسهای زنون؛ روش افنای آنتیخوان و ایودوکسوس و نظر اتمی بودن جهان که به نام دموکریتوس مربوط است، به مسیر رشد دوم تعلق دارند.
* سومین مسیر تکاملی مربوط به هندسه عالی یا هندسه منحنیهایی بجز دایره و خط مستقیم و سطوحی غیر از کره و صفحه است. شگفت آنکه قسمت عمده این هندسه عالی در تلاشهای مستمر برای حل سه مساله ترسیم که امروزه هم مشهورند عبارتند از: تضعیف مکعب ، تثلیث زاویه و تربیع دایره اختصاص دارد.
نخستین دانشمند معروف یونانی طالس ملطلی (۶۳۹- ۵۴۸ ق. م.) است که در پیدایش علوم نقش مهمی به عهده داشت و می توان وی را موجد علوم فیزیک، نجوم و هندسه دانست. در اوایل قرن ششم ق. م. فیثاغورث (۵۷۲-۵۰۰ ق. م.) از اهالی ساموس یونان کم کم ریاضیات را بر پایه و اساسی قرار داد و به ایجاد مکتب فلسفی خویش همت گماشت. پس از فیثاغورث باید از زنون فیلسوف و ریاضیدان یونانی که در ۴۹۰ ق. م. در ایلیا متولد شده است نام ببریم. در اوایل نیمه دوم قرن پنجم بقراط از اهالی کیوس قضایای متفرق آن زمان را گردآوری کرد و در حقیقت همین قضایا است که مبانی هندسه جدید ما را تشکیل می دهند.
در قرن چهارم قبل از میلاد افلاطون در باغ آکادموس در آتن مکتبی ایجاد کرد که نه قرن بعد از او نیز همچنان برپا ماند. این فیلسوف بزرگ به تکمیل منطق که رکن اساسی ریاضیات است همت گماشت و چندی بعد منجم و ریاضی دان معاصر وی ادوکس با ایجاد تئوری نسبتها نشان داد که کمیات اندازه نگرفتنی که تا آن زمان در مسیر علوم ریاضی گودالی حفر کرده بود هیچ چیز غیرعادی ندارد و می توان مانند سایر اعداد قواعد حساب را در مورد آنها به کار برد.
در قرن دوم ق. م. نام تنها ریاضی دانی که بیش از همه تجلی داشت ابرخس یا هیپارک بود. این ریاضیدان و منجم بزرگ گامهای بلند و استادانه ای در علم نجوم برداشت و مثلثات را نیز اختراع کرد. بطلمیوس که به احتمال قوی با امپراطوران بطالسه هیچگونه ارتباطی ندارد در تعقیب افکار هیپارک بسیار کوشید. در سال ۶۲۲ م. که حضرت محمد (ص) از مکه هجرت نمود در واقع آغاز شکفتگی تمدن اسلام بود.
در زمان مأمون خلیفه عباسی تمدن اسلام به حد اعتلای خود رسید به طوری که از اواسط قرن هشتم تا اواخر قرن یازدهم زبان عربی زبان علمی بین المللی شد. از ریاضیدانان بزرگ اسلامی این دوره یکی خوارزمی می باشد که در سال ۸۲۰ به هنگام خلافت مأمون در بغداد کتاب مشهور الجبر و المقابله را نوشت.
دیگر ابوالوفا (۹۹۸-۹۳۸) است که جداول مثلثاتی ذیقیمتی پدید آورد و بالاخره محمد بن هیثم (۱۰۳۹-۹۶۵) معروف به الحسن را باید نام برد که صاحب تألیفات بسیاری در ریاضیات و نجوم است. قرون وسطی از قرن پنجم تا قرن دوازدهم یکی از دردناکترین ادوار تاریخی اروپاست. عامه مردم در منتهای فلاکت و بدبختی به سر می بردند. برجسته ترین نامهایی که در این دوره ملاحظه می نماییم در مرحله اول لئونارد بوناکسی (۱۲۲۰-۱۱۷۰) ریاضیدان ایتالیایی است. دیگر نیکلاارسم فرانسوی می باشد که باید او را پیش قدم هندسه تحلیلی دانست.
در قرون پانزدهم و شانزدهم دانشمندان ایتالیایی و شاگردان آلمانی آنها در حساب عددی جبر و مکانیک ترقیات شایان نمودند. در اواخر قرن شانزدهم در فرانسه شخصی به نام فرانسوا ویت (۱۶۰۳-۱۵۴۰م) به پیشرفت علوم ریاضی خدمات ارزنده‌ای نمود. وی یکی از واضعین بزرگ علم جبر و مقابله جدید و در عین حال هندسه دان قابلی بود.
▪ کوپرنیک (۱۵۴۳-۱۴۷۳) منجم بزرگ لهستانی در اواسط قرن شانزدهم درکتاب مشهور خود به نام درباره دوران اجسام آسمانی منظومه شمسی را این چنین ارائه داد:
۱) مرکز منظومه شمسی خورشید است نه زمین.
۲) در حالیکه ماه به گرد زمین می چرخد سیارات دیگر همراه با خود زمین به گرد خورشید می چرخند.
۳) زمین در هر ۲۴ ساعت یکبار حول محور خود می چرخد، نه کره ستاره های ثابت.
پس از مرگ کوپرنیک مردی به نام تیکوبراهه در کشور دانمارک متولد شد. وی نشان داد که حرکت سیارات کاملاً با نمایش و تصویر دایره های هم مرکز وفق نمی دهد. تجزیه و تحلیل نتایج نظریه تیکوبراهه به یوهان کپلر که در سال آخر زندگی براهه دستیار وی بود محول گشت. پس از سالها کار وی به نخستین کشف مهم خود رسید و چنین یافت که سیارات در حرکت خود به گرد خورشید یک مدار کاملاً دایره شکل را نمی پیمایند بلکه همه آنها بر روی مدار بیضی شکل حرکت می کنند که خورشید نیز در یکی از دو کانون آنها قرار دارد. قرن هفدهم در تاریخ ریاضیات قرنی عجیب و معجزه آساست.
از فعالترین دانشمندان این قرن کشیشی پاریسی به نام مارن مرسن که می توان وی را گرانبها ترین قاصد علمی جهان دانست. در سال ۱۶۰۹ گالیله ریاضیات و نجوم را در دانشگاه پادوا در ایتالیا تدریس می کرد. وی یکی از واضعین مکتب تجربی است. وی قانون سقوط اجسام را به دست آورد و مفهوم شتاب را تعریف کرد. در همان اوقات که گالیله نخستین دوربین نجومی خود را به سوی آسمان متوجه کرد در ۳۱ مارس ۱۵۹۶ در تورن فرانسه رنه دکارت به دنیا آمد. نام ریاضیدان بزرگ سوئیسی «پوب گولدن» را نیز باید با نهایت افتخار ذکر کرد.
شهرت وی بواسطه قضایای مربوط به اجسام دوار است که نام او را دارا می باشد و در کتابی به نام مرکزثقل ذکر شده. دیگر از دانشمندان برجسته قرن هفدهم پی یر دوفرما ریاضیدان بزرگ فرانسوی است که یکی از برجسته ترین آثار او تئوری اعداد است که وی کاملاً بوجود آورنده آن می باشد. ریاضیدان بزرگ دیگری که در این قرن به خوبی درخشید ژیرارد زارک فرانسوی است که بیشتر به واسطه کارهای درخشانش در هنر معماری شهرت یافت و بالاخره ریاضی دان دیگر فرانسوی یعنی روبروال که بواسطه ترازوی مشهوری که نام او را همراه دارد همه جا معروف است.
در اواسط قرن هفدهم کم کم مقدمات اولیه آنالیز عناصر بی نهایت کوچک در تاریکی و ابهام به وجود آمد و رفته رفته سر و صدای آن به گوش مردم رسید. بدون شک پاسکال همراه با دکارت و فرما یکی از سه ریاضیدان بزرگ نیمه اول قرن هفدهم بود و نیز می توان ارزش او را در علم فیزیک برابر گالیله دانست.
در نیمه دوم قرن هفدهم ریاضی بطور دقیق دنبال شد. سه نابغه فنا ناپذیر این دوره یعنی نیوتن انگلیسی، لایب نیتس آلمانی و هویگنس هلندی جهان علم را روشن کرده بودند. لایب نیتس در سال ۱۶۸۴ با انتشار مقاله ای درباره حساب عناصر بی نهایت کوچک انقلابی برپا کرد. هوگنس نیز در تکمیل دینامیک و مکانیک استدلالی با نیوتن همکاری کرد و عملیات مختلف آنها باعث شد که ارزش واقعی حساب انتگرال در توسعه علوم دقیقه روشن شود.
در قرن هجدهم دیگر تمام طوفانهای قرن هفدهم فرو نشست و تحولات این قرن عجیب به یک دوره آرامش مبدل گردید. دالامبر فرانسوی آنالیز ریاضی را در مکانیک به کار برد و از روشهای آن استفاده کرد. کلرو رقیب او در ۱۸ سالگی کتابی به نام تفحصات درباره منحنی های دو انحنایی انتشار داد و در مدت شانزده سال رساله ای تهیه و به آکادمی علوم تقدیم نمود که شامل مطالب قابل توجهی مخصوصاً در مورد مکانیک آسمانی و هندسه بی نهایت کوچکها بود. دیگر لئونارد اویلر ریاضیدان بزرگ سوئیسی است که در ۱۵ آوریل ۱۷۰۷ م. در شهر بال متولد شد و در ۱۷ سپتامبر ۱۷۸۳ م. در روسیه درگذشت.
لاگرانژ از جمله بزرگترین ریاضیدانان تمام ادوار تاریخ بشر است. مکانیک تحلیلی او که در سال ۱۷۸۸ . عمومیت یافت بزرگترین شاهکار وی به شمار می رود. لاپلاس که در تدریس ریاضی دانشسرای عالی پاریس معاون لاگرانژ بود کتابی تحت عنوان مکانیک آسمانی در پنج جلد انتشار داد. گاسپار مونژ این نابغه دانشمند وقتی که هنوز بیست سال نداشت شاخه جدید علم هندسه به نام هندسه ترسیمی را بوجود آورد.
ژان باتیست فوریه در مسأله انتشار حرارت روش بدیع و جالبی اختراع کرد که یکی از مهمترین مباحث آنالیز ریاضی گردید. از دیگر دانشمندان بزرگ این قرن سیمون دنی پوآسون (۱۸۴۰-۱۷۸۱) فرانسوی و شاگرد لاپلاس می باشد که اکتشافات مهمی در ریاضیات نمود گائوس ریاضیدان شهیر آلمانی تئوری کامل مغناطیس را بوجود آورد. مطالعات او درباره انحناء و ترسیم نقشه ها و نمایش سطوح بر صفحات اصلی و اساسی می باشد.
کوشی فرانسوی که در سراسر نیمه اول قرن پانزدهم بر دیگر هموطنان برتری داشت با منطق دقیق خود تئوری های زیادی از حساب انتگرال را توسعه داد. آبل در سال ۱۸۲۴ ثابت نمود که صرفنظر از معادلات درجه اول تا درجه چهارم هیچ دستور جبری که بتواند معادله درجه پنجم را به نتیجه برساند وجود ندارد. گالوا که در ۲۶ اکتبر ۱۸۱۱ م. در پاریس متولد شد تئوری گروهها را که قبلاً بوسیله کوشی و لاگرانژ مطالعه شده بود در معادلات جبری به کار برد و گروه جانشینی هر معادله را مشخص کرد.
دیگر از دانشمندان بزرگ این قرن ژنرال پونسله فرانسوی می باشد که آثاری همچون «موارد استعمال آنالیز در ریاضی» و «خواص تصویری اشکال» دارد همچنین لازار کانو فرانسوی که اکتشافات هندسی او دارای اهمیت فوق العاده می باشد. میشل شال هندسه مطلق را با بالاترین درجه استادی به بالاترین حد ممکن ترقی داد. در نیمه اول قرن نوزدهم ریاضیدان روسی نیکلاس ایوانویچ لوباچوشکی نخستین کشف خود را درباره هندسه غیراقلیدسی به جامعه ریاضیات و فیزیک قازان تقدیم کرد.
ادوارد کومرنیز در نتیجه اختراع نوعی از اعداد به نام اعداد ایده آل جایزه ریاضیات آکادمی علوم پاریس را از آن خود کرد. در اینجا ذکر نام دانشمندانی نظیر شارل وایرشتراس و شارل هرمیت که در مورد توابع بیضوی کشفیات مهمی نمودند ضروری است. ژرژ کانتور ریاضیدان آلمانی مکه در روسیه تولد یافته بود در ربع آخر قرن نوزدهم با وضع فرضیه مجموعه ها اساس هندسه اقلیدسی را در هم کوفت.
▪ کانتور مجموعه را به دو صورت زیر تعریف کرد:
۱) اجتماع اشیایی که دارای صفت ممیزه مشترک باشند هر یک از آن اشیاء را عنصر مجموعه می گویند.
۲) اجتماع اشیایی مشخص و متمایز
ولی ابتکاری و تصوری هنری پوانکاره یا غول فکر ریاضی آخرین دانشمند جهانی است که به همه علوم واقف بود. وی در بیست و هفت سالگی بزرگترین اکتشاف خود یعنی توابع فوشین را به دنیای دانش تقدیم نمود. بعد از پوانکاره ریاضیدان سوئدی متیاگ لفلر کارهای او را ادامه داد و سپس ریاضیدان نامی فرانسوی امیل پیکارد در این راه قدم نهاد. در اواخر قرن نوزدهم علم فیزیک ریاضی به منتها درجه تکامل خود رسید و دانش نجوم مکانیک آسمانی تکمیل گردید. امروزه ریاضیات بیش از پیش در حریم سایر علوم نفوذ کرده و نه فقط علوم نجوم و فیزیک و شیمی تحت انضباط آن درآمده اند بلکه اصولاً ریاضیات دانش مطلق و روح علم شده است

تاریخچه مثلثات

تاریخ علم به آدمى یارى مى رساند تا «دانش» را از «شبه دانش» و «درست» را از «نادرست» تشخیص دهد و در بند خرافه و موهومات گرفتار نشود. در میان تاریخ علم، تاریخ ریاضیات و سرگذشت آن در بین اقوام مختلف ، مهجور واقع شده و به رغم اهمیت زیاد، از آن غافل مانده اند. در نظر داریم در این فضاى اندک و در حد وسعمان برخى از حقایق تاریخى( به خصوص در مورد رشته ریاضیات) را برایتان روشن و اهمیت زیاد ریاضى و تاریخ آن را در زندگى روزمره بیان کنیم.
براى بسیارى از افراد پرسش هایى پیش مى آید که پاسخى براى آن ندارند: چه شده است که محیط دایره یا زاویه را با درجه و دقیقه و ثانیه و بخش هاى شصت شصتى اندازه مى گیرند؟ چرا ریاضیات با کمیت هاى ثابت ادامه نیافت و به ریاضیات با کمیت هاى متغیر روى آوردند؟ مفهوم تغییر مبناها در عدد نویسى و عدد شمارى از کجا و به چه مناسبت آغاز شد؟ یا چرا در سراسر جهان عدد نویسى در مبناى ۱۰ را پذیرفته اند، با اینکه براى نمونه عدد نویسى در مبناى ۱۲ مى تواند به ساده تر شدن محاسبه ها کمک کند؟ ریاضیات از چه بحران هایى گذشته و چگونه راه خود را به جلو گشوده است؟ چرا جبر جانشین حساب شد، چه ضرورت هایى موجب پیدایش چندجمله اى هاى جبرى و معادله شد؟ و… براى یافتن پاسخ هاى این سئوالات و هزاران سئوال مشابه دیگر در کلیه رشته ها، تلاش مى کنیم راه را نشان دهیم، پیمودن آن با شماست…

پیدایش مثلثات

از نامگذارى «مثلثات» مى توان حدس زد که این شاخه از ریاضیات دست کم در آغاز پیدایش خود به نحوى با «مثلث» و مسئله هاى مربوط به مثلث بستگى داشته است. در واقع پیدایش و پیشرفت مثلثات را باید نتیجه اى از تلاش هاى ریاضیدانان براى رفع دشوارى هاى مربوط به محاسبه هایى دانست که در هندسه روبه روى دانشمندان بوده است. در ضمن دشوارى هاى هندسى، خود ناشى از مسئله هایى بوده است که در اخترشناسى با آن روبه رو مى شده اند و بیشتر جنبه محاسبه اى داشته اند. در اخترشناسى اغلب به مسئله هایى بر مى خوریم که براى حل آنها به مثلثات و دستورهاى آن نیازمندیم. ساده ترین این مسئله ها، پیدا کردن یک کمان دایره (بر حسب درجه) است، وقتى که شعاع دایره و طول وتر این کمان معلوم باشد یا برعکس، پیدا کردن طول وترى که طول شعاع دایره و اندازه کمان معلوم باشد. مى دانید سینوس یک کمان از لحاظ قدر مطلق برابر با نصف طول وتر دو برابر آن کمان است. همین تعریف ساده اساس رابطه بین کمان ها و وترها را در دایره تشکیل مى دهد و مثلثات هم از همین جا شروع شد. کهن ترین جدولى که به ما رسیده است و در آن طول وترهاى برخى کمان ها داده شده است متعلق به هیپارک، اخترشناس سده دوم میلادى است و شاید بتوان تنظیم این جدول را نخستین گام در راه پیدایش مثلثات دانست. منه لائوس ریاضیدان و بطلمیوس اخترشناس (هر دو در سده دوم میلادى) نیز در این زمینه نوشته هایى از خود باقى گذاشته اند. ولى همه کارهاى ریاضیدانان و اخترشناسان یونانى در درون هندسه انجام گرفت و هرگز به مفهوم هاى اصلى مثلثات نرسیدند. نخستین گام اصلى به وسیله آریابهاتا، ریاضیدان هندى سده پنجم میلادى برداشته شد که در واقع تعریفى براى نیم وتر یک کمان _یعنى همان سینوس- داد. از این به بعد به تقریب همه کارهاى مربوط به شکل گیرى مثلثات (چه در روى صفحه و چه در روى کره) به وسیله دانشمندان ایرانى انجام گرفت. خوارزمى نخستین جدول هاى سینوسى را تنظیم کرد و پس از او همه ریاضیدانان ایرانى گام هایى در جهت تکمیل این جدول ها و گسترش مفهوم هاى مثلثاتى برداشتند. مروزى جدول سینوس ها را تقریبا ۳۰ درجه به ۳۰ درجه تنظیم کرد و براى نخستین بار به دلیل نیازهاى اخترشناسى مفهوم تانژانت را تعریف کرد. جدى ترین تلاش ها به وسیله ابوریحان بیرونى و ابوالوفاى بوزجانى انجام گرفت که توانستند پیچیده ترین دستورهاى مثلثاتى را پیدا کنند و جدول هاى سینوسى و تانژانتى را با دقت بیشترى تنظیم کنند. ابوالوفا با روش جالبى به یارى نابرابرى ها توانست مقدار سینوس کمان ۳۰ دقیقه را پیدا کند و سرانجام خواجه نصیرالدین طوسى با جمع بندى کارهاى دانشمندان ایرانى پیش از خود نخستین کتاب مستقل مثلثات را نوشت. بعد از طوسى، جمشید کاشانى ریاضیدان ایرانى زمان تیموریان با استفاده از روش زیبایى که براى حل معادله درجه سوم پیدا کرده بود، توانست راهى براى محاسبه سینوس کمان یک درجه با هر دقت دلخواه پیدا کند. پیشرفت بعدى دانش مثلثات از سده پانزدهم میلادى و در اروپاى غربى انجام گرفت. یک نمونه از مواردى که ایرانى بودن این دانش را تا حدودى نشان مى دهد از این قرار است: ریاضیدانان ایرانى از واژه «جیب» (واژه عربى به معنى «گریبان») براى سینوس و از واژه «جیب تمام» براى کسینوس استفاده مى کردند. وقتى نوشته هاى ریاضیدانان ایرانى به ویژه خوارزمى به زبان لاتین و زبان هاى اروپایى ترجمه شد، معناى واژه «جیب» را در زبان خود به جاى آن گذاشتند: سینوس. این واژه در زبان فرانسوى همان معناى جیب عربى را دارد. نخستین ترجمه از نوشته هاى ریاضیدانان ایرانى که در آن صحبت از نسبت هاى مثلثاتى شده است، ترجمه اى بود که در سده دوازدهم میلادى به وسیله «گرادوس کره مونه سیس» ایتالیایى از عربى به لاتینى انجام گرفت و در آن واژه سینوس را به کار برد. اما درباره ریشه واژه «جیب» دو دیدگاه وجود دارد: «جیا» در زبان سانسکریت به معناى وتر و گاهى «نیم وتر» است. نخستین کتابى که به وسیله فزازى (یک ریاضیدان ایرانى) به دستور منصور خلیفه عباسى به زبان عربى ترجمه شد، کتابى از نوشته هاى دانشمندان هندى درباره اخترشناسى بود. مترجم براى حرمت گذاشتن به نویسندگان کتاب، «جیا» را تغییر نمى دهد و تنها براى اینکه در عربى بى معنا نباشد، آن را به صورت «جیب» در مى آورد. دیدگاه دوم که منطقى تر به نظر مى آید این است که در ترجمه از واژه فارسى «جیپ»- بر وزن سیب- استفاده شد که به معنى «تکه چوب عمود» یا «دیرک» است. نسخه نویسان بعدى که فارسى را فراموش کرده بودند و معناى «جیپ» را نمى دانستند، آن را «جیب» خواندند که در عربى معنایى داشته باشد.

تاریخچه احتمال و خوان اول

پیدایش رسمی احتمال از قرن هفدهم به عنوان متدی برای محاسبه شانس در بازیهای قمار بوده است. اگر چه ایده های احتمال شانس و تصادفی بودن از تاریخ باستان در رابطه با افسونگری و بخت آزمایی و بازیهای شانسی و حتی در تقسیم کار بین راهبان در مراسم مذهبی وجود داشته است و به علاوه شواهدی از بکارگیری این ایده ها در مسایل حقوق٫ بیمه٫ پزشکی و نجوم نیز یافت میشود٫ اما بسیار عجیب است که حتی یونانیان اثری از خود در رابطه با استفاده از تقارنی که در هندسه بکار می برده اند در زمینه احتمال یا اصولی که حاکم بر مسایل شانس باشد بجا نگذاشته اند.
ارسطو پیشامدها را به سه دسته تقسیم می نمود:
۱) پیشامدهای قطعی که لزومآ اتفاق می افتادند.
۲) پیشامدهای احتمالی که در بیشتر موارد اتفاق می افتادند.
۳) پیشامدهای غیر قابل پیش بینی و غیر قابل شناسایی که فقط با شانس محض رخ میدهند.
اما ارسطو به تعبیرهای مختلف احتمال اعتقاد نداشته و فقط احتمال شخصی که مربوط به درجه اعتقاد افراد نسبت به وقوع پیشامدهاست را معتبر می دانسته است.
پاسکال و فرما اولی کسانی هستند که در اوایل قرن هفدهم مسایل مربوط به بازیهای شانسی را مورد مطالعه قرار دادند و این دو نفر به عنوان بنیانگزاران تیوری ریاضی احتمال لقب گرفته اند. دانشمندانی از قبیل هی گنز کارهای آنها را ادامه داده و ویت و هلی این مسایل را در آمارهای اجتماعی بکار گرفتند. این علم جدید نخستین نقطه اوج خود را در اثر مشهوری از ژاکوب برنولی بدست آورد. در این اثر علاوه بر تعریف کلاسیک احتمال ریاضی٫ اساس خاصی از قانون اعداد بزرگ و کاربردهای احتمال در آمارهای اجتماعی نیز مطرح شده است.
در قرن هجدهم متفکران بزرگی چون دی مور٫ دانیل برنولی٫ آلمبرت٫ اویلر٫ لاگرانژ٫ بیز٫ لاپلاس و گاوس قسمتی از وقت خود را به این علم جدید اختصاص دادند. بیز در سال ۱۷۶۳ قانون معروف بیز را ارایه می دهد و لاپلاس در نوشته ای تمام موضوع علم احتمال را جمع آوری می کند. مهمترین قضایای حدی که در محاسبات احتمالی بکار می رفته و تاثیر احتمال در ریاضی٫ فیزیک٫ علوم طبیعی٫ آمار٫ فلسفه و جامعه شناسی در این اثر جمع آوری شده است.
با مرگ لاپلاس در سال ۱۸۷۲ اوج پیشرفت این علم به اتمام رسید و علی رغم برخی تلاشهای فردی که ماحصل آنها کشف قضایایی چون قضیه اعداد بزرگ پواسون و یا نظریه خطاهای گاوس بود٫ بطور کلی احتمال کلاسیک ارتباط خود را با مسایل تجربی و علمی از دست میدهد. اما جریانهای متقابل ظاهر می شوند. به موازات پیشرفت نظریه ریاضی یک نظریه آمار به عنوان کاربردهایی از احتمال بوجود می آید. این نظریه در رابطه با مسایل مهم اجتماعی از قبیل اداره داده های آماری٫ مطالعه جمعیت و مسایل بیمه بکار می رفته است. اساس کار توسط افرادی چون کوتلت و لکسیز ریخته شده و توسط دانشمندانی چون فشنر(روانشناس)٫ تیله و برانز(منجمان)٫ گالتون و پیرسون(زیست شناسان) پیشرفت نموده است. این کارها در اواخر قرن نوزدهم در جریان بوده و در انگلستان و برخی دیگر از کشورها حرفه حسابگری٫ به مفهوم آماردانی که از اقتصاد و ریاضی هم اطلاعاتی دارد و در جمعیت شناسی و بیمه خبره می شود٫ رونق می یابد. از طرف دیگر فرمولهای کلاسیک ایده های احتمال میز مسیر پیشرفت و کاربردی خود را ادامه میدادند. در این قرن در تلاش برای روشن سازی پایه منطقی کاربردهای احتمال٫ وان میزز یک فرمولبندی جدید برای محاسبات احتمالی ارایه میدهد که نه تنها از نظر منطقی سازگار بوده بلکه نظریه ریاضی و تجربی پدیده های آماری در علوم فیزیکی و اجتماعی را پایه گذاری می نماید.
مدل کلاسیک احتمال توسط برنولی و لاپلاس معرفی شد. این مدل به دلیل فرض همطرازی و عدم امکان تکرار در شرایط یکسان و دلایل دیگر با اشکالاتی روبروست که بسیاری از پدیده های طبیعی بر آن منطبق نیست.
ایده های اساسی نظریه تجربی احتمال که قرار دادن فراوانی نسبی بجای احتمال است در سال ۱۸۷۳ توسط پواسون ارایه گردید.
بسیاری از مسایل احتمال حتی قبل از بیان اصول آن توسط کلموگرف در سال ٫۱۹۳۳ با ابزارهای تجربی و حتی نظری توسط دانشمندان مطرح شده است. ولی کلموگرف با بیان اصول احتمال پایه این علم و ارتباط دقیق آنرا با مباحث ریاضی مستحکم می نماید.
در این زمان احتمال به عنوان یکی از شاخه های ریاضی٫ نه تنها کلیه ابزارهای ریاضی را جهت پیشرفت خود بکار می گیرد٫ بلکه توانسته کاربردهایی را در حل برخی از مسایل ریاضی داشته باشد. نظریه احتمالی اعداد٫ نظریه احتمالی ترکیبیاتی و کاربردهای شاخص احتمال در برخی از مسایل آنالیز٫ بعضی از کاربردهای احتمال در ریاضی هستند.
از طرف دیگر احتمال به عنوان زیربنای ساختاری و اصول ریاضی علم آمار٫ در جهت پیشرفت این علم و قوام بخشی به دستورات آن نقشی اساسی دارد.
مسایل جالب احتمال هندسی و نظریه احتمالی اعداد٫ شمه ای از زیبایی های احتمال است که همه اینها با هم زیبایی٫ کارآیی و توان علم احتمال را نشان می دهند.
خوان اول از کنفرانس ابرساختارهای جبری: ابرساختارها چیزی نیستند جز تعمیم ایده های کلاسیک به سطحی بالاتر. به عنوان مثال تعریف عملگر از مجموعه ای به پاورست آن مجموعه (پاورست همان مجموعه تمام زیر مجموعه های یک مجموعه است.

تاریخ هندسه نااقلیدسی

نیکلای ایوانوویچ لوباچفسکی نخستین کسی بود که در سال ۱۸۲۹ مقاله ای در زمینه هندسه نااقلیدسی منتشر ساخت. هنگامی که اثر او منتشر شد چندان مورد توجه قرار نگرفت، بیشتر به این علت که به زبان روسی نوشته شده بود و روس هایی که آن را می خواندند، سخت خرده گیری می کردند. وی در سال ۱۸۴۰ مقاله ای به زبان آلمانی منتشر کرد که مورد توجه گاوس قرار گرفت. گاوس در نامه ای به ه. ک. شوماخر از آن مقاله ستایش کرد و در عین حال تقدم خود را در این زمینه تکرار کرد. لوباچفسکی هندسه اش را در آغاز «هندسه انگاری» و بعد «هندسه عام» نام گذارد و موضوع آن را در مقاله هایی که منتشر کرد به طور کامل بسط داد
لوباچفسکی علنا با تعلیمات و اصول عقاید کانت درباره فضا، به مثابه شهود ذهنی، به مبارزه برخاست و در سال ۱۸۳۵ نوشت: «تلاش های بی ثمری که از زمان اقلیدس تاکنون صورت گرفته است... این بدگمانی را در من برانگیخت که حقیقت... در داده ها وجود ندارد و برای اثبات آن مثل مورد قوانین دیگر طبیعت کمک های تجربی، مثلا مشاهدات نجومی نیاز است.» اریک تمپل بل در کتاب «مردان ریاضیات» لوباچفسکی را «آزادکننده بزرگ» و «کپرنیک دانش هندسه» نام داده است. بل می گوید نام او باید برای هر بچه مدرسه ای به اندازه نام های میکل آنژ یا ناپلئون آشنا باشد. بدبختانه از لوباچفسکی در دوران حیاتش تجلیل نشد.
و در حقیقت در ۱۸۴۶ به رغم بیست سال خدمت برجسته ای که با عنوان استاد و رئیس انجام داده بود، از دانشگاه قازان اخراج شد. او مجبور شد در سال پیش از مرگش، به علت نابینایی آخرین کتابش را تقریر کند تا برایش بنویسند.

هندسه هذلولی

تا وقتی که مکاتبات گاوس، پس از مرگ او در ۱۸۵۵، منتشر نشده بود، جهان ریاضی هندسه نااقلیدسی را جدی نگرفته بود. هنوز هم تا سال ۱۸۸۸ لوئیس کارول به هندسه نااقلیدسی می خندید برخی از بهترین ریاضیدانان بلترامی، کیلی، کلاین، پوانکاره، کلیفور و ریمان موضوع را جدی گرفتند، بسط دادند، روشن کردند و آن را در شاخه های دیگر ریاضیات، به ویژه در نظریه توابع مختلط به کار بردند. در ۱۸۶۸ ریاضیدان ایتالیایی «ائوجنیو بلترامی» برای آخرین بار مسئله اثبات اصل توازی را پیش کشید و ثابت کرد که اثبات آن غیرممکن است او این کار را از این راه که هندسه نااقلیدسی درست همچون هندسه اقلیدسی، دستگاهی است سازگار، اثبات کرد.
در هندسه نااقلیدسی، نقیض اصل توازی را به عنوان اصل موضوع مفروض می گیریم. یعنی این گزاره را که «از یک نقطه خارج از یک خط راست بیش از یک نقطه می توان به موازات آن رسم کرد» به جای اصل موضوع توازی اقلیدس قرار می دهیم. این امر به هندسه حیرت انگیزی منجر می شود که با هندسه اقلیدسی تفاوت اساسی دارد. به قول گاوس قضایای این هندسه به باطلنما می مانند و شاید در نظر فردی مبتدی بی معنی جلوه کنند. ولی تفکر پیگیر و آرام آشکار می سازد که هیچ چیز ناممکن در آنها نیست، مثلا، سه زاویه مثلث تا بخواهید می توانند کوچک شوند به شرطی که اضلاع آن به اندازه کافی بزرگ شوند و تازه اضلاع مثلث هرچه باشند، مساحت مثلث هیچ گاه نمی تواند از حد معینی زیادتر شود و در واقع هیچ گاه هم نمی تواند به آن برسد.
گاوس در نامه تاریخی خود به دوست ریاضیدانش «تاورینوس» می گوید: «همه تلاش های من برای یافتن یک تناقض یا یک ناسازگاری در این هندسه نااقلیدسی به شکست انجامیده است. چیزی که در آن با ادراک ما مغایرت دارد این است که اگر راست باشد، باید در فضای آن یک اندازه خطی وجود داشته باشد که خود به خود معین است اگر چه ما آن را نمی دانیم... هرگاه این هندسه نااقلیدسی راست باشد و بتوان آن مقدار ثابت را با همان کمیاتی که به هنگام اندازه گیری هایمان بر روی زمین و در آسمان بدان ها برمی خوریم، مقایسه کنیم آن گاه ممکن است آن مقدار ثابت را پس از تجربه تعیین کرد. در نتیجه، من گاهی به شوخی آرزو کرده ام که هندسه اقلیدسی راست نبود، چون در آن صورت ما از پیش انگاره مطلقی برای اندازه گیری داشتیم.»
در هندسه هذلولی می توان ثابت کرد که اگر دو مثلث متشابه باشند، آنگاه قابل انطباق اند. به عبارت دیگر ملاک «ززز» برای قابلیت انطباق درست است در این هندسه، هندسه هذلولی ممکن نیست مثلثی را بدون انداختن از شکل طبیعی بزرگ یا کوچک کرد. در نتیجه در یک جهان هذلولی، عکاسی ذاتا جنبه فراواقعگرایی سوررئالیستی پیدا خواهد کرد یک نتیجه تکان دهنده قضیه مذکور این است که در هندسه هذلولی یک پاره خط می تواند به کمک یک زاویه مشخص شود. یعنی یک زاویه از یک مثلث متساوی الساقین، طول یک ضلع را به طور منحصر به فرد معین می سازد. همان طور که در نامه گاوس به تاورینوس نیز ذکر گردید، اغلب با بیان اینکه هندسه هذلولی واحد مطلق طول دارد، این نکته را هیجان انگیزتر می کنند. اگر هندسه جهان مادی هندسه هذلولی بود لازم نبود واحد طول با دقت در دفتر استانداردها نگاهداری شود.
در هندسه اقلیدسی، تقسیم هر زاویه به سه قسمت برابر، به وسیله ستاره خط کش غیرمدرج و پرگار تنها، نشدنی است.
در هندسه هذلولی، علاوه بر آنکه این تقسیم نشدنی است، تقسیم هر پاره خط به سه قسمت برابر نیز به وسیله ستاره و پرگار تنها، نشدنی است در هندسه اقلیدسی، رسم چهارضلعی منتظمی که مساحت آن برابر مساحت دایره مفروضی باشد، شدنی نیست ولی در هندسه هذلولی این کار شدنی است

تاریخچه ی انتگرال

بیش از دو هزار سال پیش ارشمیدس (287-212 قبل از میلاد) فرمول هایی را برای محاسبه سطح وجه ها ، ناحیه ها و حجم های جامد مثل کره ، مخروط و سهمی یافت . روش انتگرال گیری ارشمیدس استثنایی و فوق العاده بود جبر ، نقش های بنیادی ، کلیات و حتی واحد اعشار را هم نمی دانست .
لیبنیز (1716-1646) و نیوتن (1727-1642) حسابان را کشف کردند . عقیده کلیدی آنها این بود که مشتق گیری و انتگرال گیری اثر یکدیگر را خنثی می کنند با استفاده از این ارتباط ها آنها توانستند تعدادی از مسائل مهم در ریاضی ، فیزیک و نجوم را حل کنند.
فوریر (1830-1768) در مورد رسانش گرما بوسیله سلسله زمان های مثلثاتی را می خواند تا نقش های بنیادی را نشان دهد .رشته های فوریر و جابجایی انتگرال امروزه در زمینه های مختلفی چون داروسازی و موزیک اجرا می شود .
گائوس (1855-1777) اولین جدول انتگرال را نوشت و همراه دیگران سعی در عملی کردن انتگرال در ریاضی و علوم فیزیک کرد . کایوچی (1857-1789) انتگرال را در یک دامنه همبستگی تعریف کرد . ریمان (1866-1826) و لیبیزگو (1941-1875) انتگرال معین را بر اساس یافته های مستدل و منطقی استوار کردند .
لیوویل (1882-1809) یک اسکلت محکم برای انتگرال گیری بوجود آورد بوسیله فهمیدن اینکه چه زمانی انتگرال نامعین از نقش های اساسی دوباره در مرحله جدید خود نقش اساسی مرحله بعد هستند . هرمیت (1901-1822) یک شیوه علمی برای انتگرال گیری به صورت عقلی و فکری ( یک روش علمی برای انتگرال گیری سریع ) در دهه 1940 بعد از میلاد استراسکی این روش را همراه لگاریتم توسعه بخشید .
در دهه بیستم میلادی قبل از بوجود آمدن کامپیوترها ریاضیدانان تئوری انتگرال گیری و عملی کردن آن روی جداول انتگرال را توسعه داده بودند و پیشرفت هایی حاصل شده بود .در میان این ریاضیدانان کسانی چون واتسون ، تیچمارش ، بارنر ، ملین ، میچر ، گرانبر ، هوفریتر ، اردلی ، لوئین ، لیوک ، مگنوس ، آپل بلت ، ابرتینگر ، گرادشتاین ، اکستون ، سریواستاوا ، پرودنیکف ، برایچیکف و ماریچیف حضور داشتند .
در سال 1969 رایسیچ پیشرفت بزرگی در زمینه روش علمی گرفتن انتگرال نامعین حاصل کرد . او کارش را بر پایه تئوری عمومی و تجربی انتگرال گیری با قوانین بنیادی منتشر کرد روش او عملاً در همه گروه های قضیه بنیادی کارگر نیست تا زمانی که در وجود آن یک معادله سخت مشتق گیری هست که نیاز دارد تا حل شود . تمام تلاش ها ااز آن پس بر روی حل این معادله با روش علمی برای موفقیت های مختلف قضیه اساسی گذاشته شد . ایت تلاش ها باعث پیشرفت کامل سیر و روش علمی رایسیچ شد . در دهه 1980 پیشرفت هایی نیز برای توسعه روش او در موارد خاص از قضیه های مخصوص و اصلی او شد .
از قابلیت تعریف انتگرال معین به نتایجی دست میابیم که نشان دهنده قدرتی است که در ریاضیات می باشد (1988) جامعیت و بزرگی به ما دیدگاه موثر و قوی در مورد گسترش در ریاضیات و همچنین کارهای انجام شده در قوانین انتگرال می دهد . گذشته از این ریاضیات توانایی دارد تا به تعداد زیادی از نتیجه های مجموعه های مشهور انتگرال پاسخ دهد ( اینکه بفهمیم این اشتباهات ناشی از غلط های چاپی بوده است یا نه ) . ریاضیات این را ممکن می سازد تا هزاران مسئله انتگرال را حل نماییم به طوریکه تا کنون در هیچ یک از کتابهای دستنویس قبلی نیامده باشد . در آینده دیگر وظیفه ضروری انتگرال این است که به ازمایش تقارب خطوط ، ارزش اصلی آن و مکانیسم فرض ها بپردازد .

تاریخچه فصیل حسابداری

حسابداری در جهان نزدیک به ۶۰۰۰ سال قدمت دارد و تاریخ نخستین مدارک کشف شده حسابداری به ۳۶۰۰ سال قبل از میلاد برمی گردد. پیشینه حسابداری در ایران نیز به نخستین تمدنهایی بر می گردد که دراین سرزمین پا گرفت، و مدارک حسابداری بدست آمده با ۲۵ قرن قدمت، گواه بر پیشرفت این دانش در ایران باستان اس. در طول تاریخ، روشهای حسابداری متوع و متعددی برای اداره امور حکومتی و انجام دادن فعالیتهای اقتصادی ابداع شد، که در پاسخ به نیازهای زمان، سیر تحولی و تکاملی داشته است. ممیزی املاک در تمدن ساسانی(در جریان اصلاحات انوشیروان، به منظور تشخیص مالیاتهای ارضی، کلیه زمینهای مزروعی کشور ممیزی و مشخصات آن از جمله مساحت، نوع زمین و نوع محصول در دفتری ثبت می گردید.) و تکامل حسابداری برای نگهداری حساب درآمد و مخارج حکومتی در دوران سلجوقیان(نگارش اعداد را به صورت علایمی کوتاه شده از نام اعداد عربی، حساب سیاق می نامند.
حسابداری سیاق که احتمالا در دوران سلجوقیان تکامل یافته، روشی است که بر اساس آن، حساب جمع و خرج هر ولایت در دفتر مربوط به ان ولایت ثبت و در عین حال یک دفتر اصلی در مرکز نگهداری می شده است که خلاصه جکع و خرج هر ولایت به طور جداگانه در صفحات مربوط، در آن به خط سیاق نوشته می شده است. این روش در دوران قاجاریه تکمیل شد و کتب خمسه(دفاتر پنج گانه) برای گروههای عمده مخارج نیز نگهداری می شده است.
و نگهداری حساب فعالیتهای بازرگانی به حساب سیاق، نمونه های بارز و پیشرفته آن است.
با این حال حسابداری نوین( دوطرفه) همانند بسیاری از دانشهای کاربردی دیگر، به همراه ورود فراورده های صنعتی و رسوخ موسسات و شرکتهای خارجی به ایران راه یافت. و در جریان تحولات اقتصادی _اجتماعی صد سال گذشته با پیدایش سازمانهای جدید دولتی و خصوصی و دگرگونی شیوه های تولید و توزیع بسیار پیشرفت کرد.
حساداری با تمدن همزاد است و به اندازه تمدن بشری قدمت دارد. در تمدنهای باستانی بین النهرین که قسمت اعظم ثروتهای جامعه در اختیار فرمانروا یا فرمانروایان بود. معمولا کاهنان که قشر ممتازی را در سلسله مراتب اجتماعی تشکیل می دادند و ظیفه نگارش را بطور اعم و نگهداری حساب درآمدها و ثروتهای حکومت را بطور اخص به عهده یا در واقع در انحصار داشتند و در عین حال به ثبت برخی از معاملات شهروندان نیز می پرداختند، از جمله در تمدن باستانی سومر (SUMMER) نظام مالی جامعی برقرار بود و کاهنان سومری علاوه بر نگهداری حساب درآمدهای حکومتی، به نحوی موجودی غلات، تعداد دامها و میزان املاک حکومتی را محاسبه می کردند.
نخستین مدرک کشف شده حسابداری در جهان، لوحه های سفالین از تمدن سومر در بابل (Babylon) است و قدمت آن به ۳۶۰۰ سال قبل از میلاد می رسد و از پرداخت دستمزد تعدادی کارگر حکایت دارد.
مدارک و شواهد بدست آمده از تمدن باستانی مصر (۵۲۵_۵۰۰۰ ق.م) حکایت از آن دارد که در اجرای طرحهای ساختمانی این تمدن، نوعی کنترل حسابداری برقرار بوده که بهره گیری از نیروی کار هزاران هزار نفر را در امر ایجاد بنا و حمل و نقل مصالح ساختمانی در تشکیلاتی منظم، میسر می کرده است، از تمدن مصر در دورانی که یونانیان و رومیان بر آن تسلط داشتند نیز مجموعه های متعددی از حسابهای نوشته شده بر پاپیروس باقی مانده است.
شواهد و مدارک به دست آمده از یونان باستان نیز حکایت از استقرار کنترلهای حسابداری دارد. از جمله حساب معبد پارتنون در لوحه های مرمرین اکروپولیس حک و بخشی از ان هنوز هم باقی است.
سکه به عنوان واحد پول حدود ۷۰۰ سال قبل از میلاد در لیدی(Lydia) ابداع گردید.(لیدی سرزمینی باستانی است که در آسیای صغیر، کنار دریای اژه بین میزی (Mysia) و کاری(Caria) قرار داشت. کرزوس (Croesus) آخرین پادشاه آن از کوروش شکست خورد.) و به سرعت در تمدنهای آن زمان رواج یافت. در ازان عصر هخامنشی ، نظام مالی و پولی (نظام پولی بدیعی توسط داریوش اول بر پایه طلا و نقره با رابطه مبادله ثابت پایه گذاری شد و سکه داریک به وزن ۸.۴۱ گرم در مقابل ۲۰ سکه نقره به نام “شکل” هر یک به وزن ۵.۶ گرم مبادله می شده است و بنابراین رابطه تبدیل طلا به نقره ( ۳/۱ ۱۳ ) ) جامع ومنسجمی بر قرار بوده و حساب درآمدها و مخارج حکومت به ریز و به دقت ثبت و ظبط و نگهداری می شده است.
در رم و یونان باستان حسابداری پیشرفته ای وجود داشته و نوعی حساب جمع و خرج تنظیم می شده است. یک جمعدار، یک مامور دولت و یا شخصی که محافضت پول یا دارایی دیگری به او محول بوده است در مقاطعی از زمان حساب خود را به اربابش پس می داده است. برای این کار رو فهرست تفصیلی از دریافتها و پرداختها بر حسب پول، وزن یا مقیاس دیگری تهیه می شد که جمع آن دو مساوی بود. فهرست پرداخت شامل مبالغ پرداختی، کالای فروخته شده و یا به مصرف رسیده در طول یک دوره بعلاوه مانده پول و کالایی بود که نزد جمعدار باقی مانده و باید به ارباب تادیه می شد. این نوع حسابداری تا قرون وسطی ادامه یافت.
همانطور که ملاحظه فرمودید، حسابداری باستانی تنها جنبه های محدودی از فعالیتهای مالی را در بر می گرفت و یا سیستم جامعی که کلیه عملیات مالی حکومت را ثبط و ظبط کند و یا به نگهداری حساب معاملات تجاری بپردازد، فاصله بسیاری داشت.

سرمایه داری تجاری و رنسانس

از دوران باستان تا اواخر قرون وسطی تغییری اساسی در جهت تبدیل حسابداری به یک سیستم جامع صورت نگرفت و تنها پیشرفت قابل ذکر گسترش دامنه نگهداری حساب برای عملیات گوناگون حکومتها و اشخاص بود.
از اوایل قرن سیزدهم “دولت_شهرها” و یا “شهر_جمهوریهای” کوچکی خارج از سلطه پادشاهان و خوانین فیودال در ایتالیای کنونی پا گرفت که فضای سیاسی_ اقتصادی مناسبی را برای رشد سوداگری فراهم آورد.بدین معنی که در این جمهوریهای کوچک هیچ مانعی در راه تجارت آزاد، حتی تجارت با سرزمینهای دوردست وجود نداشت و استفاده از سرمایه به صورت سرمایه مولد یا سرمایه تجاری مانند کشتیها و سایر وسایل بازرگانی امکان پذیر و متداول بود. علاوه بر این، با رونق داد وستد، پول در مبادلات تجاری نقش گسترده یافت و اقتصاد پولی رواج یافت.
در قرون سیزدهم و چهاردهم همزمان با رشد بازرگانی، صنعت و بانکداری، پیشرفت زیادی در تکنیک نگهداری حساب بوجود آمد. بزرگتر شدن اندازه موسسات، رواج معاملات نسیه و استفاده از عوامل متعدد در کسب و کار موجب شد که دیگر یک شخص به تنهایی نتواند امر موسسه بزرگی را اداره کند و این امر ابداع سیستم حسابداری کاملتری را ضروری ساخت.
گمان می رود که کاربرد قاعده جمع وخرج در مورد حساب صندوق نخستین گام در راه پیدایش سیستم نوین بوده باشد.
بدین معنی که صندوقدار در ازای وجوهی که دریافت می کرد بدهکار و در مقابل مبالغی که می پرداخت بستانکار می شد. این قاعده در مورد حسابهای مشتریان نیز بکار می رفت و آنان در ازای وجوهی که قرض می گرفتند و یا کالایی که به نسیه می خریدند بدهکار و در مقابل وجوهی که می پرداختند بستانکار می شدند و بدین ترتیب مانده حساب آنها معین می شد. همین قاعده در مورد نگهداری حساب بستانکاران نیز بکار می رفت. در نیمه قرن سیزدهم حسابداران ایتالیایی متوجه این نکته شدند که دریافت پول از یک بدهکار دو ثبت را ضروری می سازد. جنبه دریافت پول که باید در حساب صندوق ثبت شود و جنبه پرداخت پول که باید در حساب شخصی پرداخت کننده پول ثبت گردد. در اوایل قرن چهاردهم دو اصطلاح بدهکار و بستانکار ، یعنی دو واژه ایتالیایی دادن(dare) و گرفتن(avere) کاملا متداول گردید. پیشرفت تازه در قرن چهاردهم ابداع شکل دو طرفه حساب بود که در سمت چپ اقلام بدهکار و در سمت راست اقلام بستانکار، نوشته می شد و با این کار چگونگی ثبتها آشکار می گردید.
حسابداری جنسی با نگهداری حسابی جداگانه برای هر محموله از کالای خریداری شده آغاز گردید و هر حساب در ازای خرید یک محموله کالا بدهکار و در مقابل حساب فروشنده یا حساب نقد بستانکار می شد.
سپس با فروش هر مقدار از کالای یک محموله، حساب مربوطه بستانکار و در مقابل حساب مشتری یا حساب نقد، بستانکار می گردید تا این که تمامی اجناس یک محموله به فروش برسد. این کار یعنی بدهکار کردن حساب هر محموله از کالای خریداری شده به قیمت خرید و بستانکار کردن آن به قیمت فروش معمولا تفاوتی را ایجاد می کرد که به حساب سود و زیان نقل می شد. بدین ترتیب سیستم دفترداری دوطرفه به آرامی و در پی مجموعه ای از ابداعات پیاپی در فاصله سالهای ۱۲۵۰-۱۳۵۰ میلادی در چند جمهوری کوچک ایتالیا زاده شد و تکامل یافت و شهرهای فلورانس، ونیز و جنوا پیشرو این تحول بودند. برخی از صاحبنظران دفاتر حساب بجا مانده از سالهای ۱۲۹۶ تا ۱۲۹۹ را نخستین دفاتر جساب دو طرفه کامل می دانند. برخی دسگر حساب دو طرفه کاملا متوازنی را که در سال ۱۳۴۰ میلادی توسط پیشکار(steward) شهر جنوا(Genoa) تنظیم گردیده است. نحستین نمونه کامل دفاتر حساب دوطرفه ذکر می کنند. در هر حال، در آستانه قرن پانزدهم میلادی در ایتالیا و دیگر کشورهای اروپایی، سیستم دفترداری دوطرفه بکار می رفته است.
گسترش فن دفترداری دوطرفه به سراسر اروپا مرهون انتشار کتاب ریاضیاتی است که لوکا پاچیولی (Luca Pacioli) به سال ۱۴۹۴ تالیف کرده است. پاچیولی کشیشی بود که در دانشگاههای جمهوریهای پروجا، ناپل، پیزا و فلورانس ریاضیات تدریس می کرد و با اندیشمندان بزرگ هم عصر خود از جمله پیرو دلا فرانسسکا (piro della francedca)، لیون باتیستا آلبرتی (Leon Battista Alberti) و لیونارده داوینچی (Leonardo da Vinci) دوستی نزدیک داشت. مطالب کتاب ریاضیات مزبور را پاچیولی نوشت و شکلهای آن را داوینچی ترسیم کرد.
بخشی از این کتاب شامل چند فصل به حسابداری اختصاص داشت که نخستین توصیف مدون از سیستم حسابداری دوطرفه است. در این بخش از کتاب، پاچیولی با استفاده از منابع و روشهای موجود سه دفتر اصلی حساب را به ترتیب زیر تشریح می کند:
دفتر باطله (Waste Book) (در ایران این دفتر را دفتر کپیه یا مسدوده هم نامیده اند.)
که خلاصه معاملات تاجر به ترتیب تاریخ وقوع در آن ثبت می شد.

دفتر روزنامه (Journal)

که در آن مطالب دفتر باطله تلخیص و بر حسب بدهکار و بستانکار ثبت می گردید.

دفتر کل (Ledger)

حاوی حسابهای واقعی که ثبتهای دفتر روزنامه به آن نقل می گردید.
پاچیولی لهمیت کاربرد پول را بعنوان مقیاس مشترک سنجش اقلام مختلف به درستی دریافته بود و بر لزوم تاریخ گذاری معملات و عطف متقابل دفاتر به یکدیگر تاکیدی بجا داشت. با این حال، وی درباره دوره مالی، تهیه تراز آزمایشی، تهیه صورت سود و زیان، بستن حساب سود و زیان به حساب سرمایه و تهیه ترازنامه مطلبی ندارد و تنها درباره طرز بستن و لزوم موازنه کردن حسابها به هنگام نقل حسابها از دفاتر قدیمی به دفاتر جدید توضیحات نسبتا کاملی داده است. همچنین پاچیولی بین اموال شخصی تاجر و اموال تجارتخانه تمایزی نگذاشته و درباره نگهداری حساب داراییهای ثابت نیز مطلبی ندارد.
رساله پاچیولی (که او را پدر حسابداری می نامند) به علت سادگی، روانی و ارزشهای عملی در طول قرنهای پانزدهم و شانزدهم به اغلب زبانهای اروپایی ترجمه شد و حسابداری دوطرفه تا اواخر قرن هفدهم در اغلب کشورهای اروپایی رواج یافت.
از قرن شانزدهم تا اوایل قرن نوزدهم تحول بنیادی در حسابداری بوجود نیامد، تنها تغییر اساسی تیوری جدیدی بود که توسط استوین (Simon Stevin) هلندی در اواخر قرن شانزدهم عنوان شد. بر اساس این تیوری در هر معامله در مقابل هر بدهکار باید یک بستانکار وجود داشته باشد. استوین همچنین ضرورت تفکیک اموال موسسه را از اموال شخصی صاحب سرمایه مطرح و لزوم نگهداری حسابی جداگانه برای سرمایه را نیز عنوان کرد. تغییرات دیگری که در این فاصله در دفترداری رخ داد عبارت بود از ایجاد ستونهای فرعی در دفاتر روزنامه و کل، منسوخ شدن دفتر باطله و جایگزینی اسناد و مدارک مربوط به معاملات (مانند فاکتور خرید و فروش) به جای آن. حسابداری جنسی نیز در این فاصله بهبود یافت و سود و زیان هر محموله محاسبه و به حساب سود و زیان نقل می گردید. تا سال ۱۸۰۰ میلادی موازنه کردن حسابها در پایان سال، تهیه صورت سود و زیان و ترازنامه معمول شد اما جز برای نگهداری سوابق فعالیتهای موسسه استفاده دیگری نداشت.
سیستم دفترداری دوطرفه که گوته (Goethe) اندیشمند بزرگ آلمانی آن را یکی از زیباترین ابداعات بشری می داند، مجموعه منسجمی را فراهم آورد که کلیه معاملات و رویدادهای مالی ثبت، سود هر فعالیت تجاری تعیین و اموال شخصی تاجر از اموال تجارتخانه یا موسسه تجاری تفکیک گردید.
ابداع و تکامل سیستم دفتر داری دوطرفه اولا سوداگریهای بزرگ مانند فرستادن کشتیهای عظیم حامل کالاهای گوناگون به نقاط مختلف جهان را با مشارکت بازرگانان و افراد متعدد، تسهیل کرد، زیرا با کاربرد آن سرمایه گذاری هر یک از مشارکت کنندگان در یک فعالیت سوداگرانه که معمولا به صورت کالا و اجناس گوناگون بود به سهولت بر حسب پول (سکه) اندازه گیری و حساب ان جداگانه نگهداری می شد و در خاتمه فعالیت نیز کالا و طلا و نقره ای که کسب شده بود، بر حسب پول قابل تقویم و محاسبه می شد و در نتیجه تعیین سهم هر یک از مشارکت کنندگان از کل درآمد حاصل به سادگی امکان پذیر می گردید.
ثانیا حسابداری دو طرفه، با فراهم ساختن امکان تفکیک اموال شخصی تاجر از اموال تجارتخانه، تشکیل شرکتهای تجارتی را با مشارکت چند نفر عملی کرد، زیرا با کاربرد آن، نگهداری حساب جداگانه سهمالشرکه هر یک از شرکا در سرمایه شرکا امکان پذیر و سهم آنان از کل دارایی شرکت و منافع حاصل از فعالیت تجاری قابل اندازه گیری و محاسبه شد. این امکان، مشارکت صاحبان سرمایه ای را که خود به کار تجارت نمی پرداختند نیز عملی ساخت و بدیت ترتیب رشد و توسعه بنگاهها و موسسات تجاری را تسریع کرد.
به رغم تحولات شگرف اقتصادی_ اجتماعی و دگرگونی و پیچیدگی و توسعه معاملات و سازمانهای تجارتی از قرن شانزدهم تا عصر حاضر، عناصر اصلی سیستم دفترداری دوطرفه همچنان بدون تغییر باقی مانده است. دلیل بقای این سیستم در طول پنج قرن در سادگی اصول، انعطاف پذیری و قابلیت ان در ثبت، انتقال و گزارش اطلاعات بسیار متنوع، در قالب صورتهای مالی قابل رسیدگی است.

انقلاب صنعتی

سسیتم ثبت دوطرفه که به اعتبار ابداع ان در ایتالیا، سیستم حسابداری ایتالیایی نیز نامیده می شود به سرعت در سراسر اروپا رواج یافت و در طول قرن هجدهم تقریبا کلیه موسسات مالی و تجاری بزرگ، این شیوه حسابداری را بکار می بردند. اما اروپای قرن هجدهم آبستن تحولاتی شگرف بود. انقلاب صنعتی در نیمه دوم این قرن آغاز و تا پایان نیمه اول قرن نوزدهم تداوم یافت و تحولات و تغییرات وسیع اقتصادی و اجتماعی را در پی داشت. این تحول بنیادین بر تمامی عرصه های زندگی فرعی و اجتماعی مردم اروپا اثر گذاشت و مناسبات اقتصادی_ اجتماعی و سیاسی جوامع اروپایی را دگرگون کرد و از طریق این قاره به سراسر جهان راه یافت و آثار مفید و زیانبار بسیاری به جای گذاشت.
بارزترین عرصه تحول در انقلاب صنعتی، قرار گرفتن ماشین در خدمت تولید بود که شیوه تولید را از تولید دستی به تولید کارخانه ای متحول کرد.
پیدایش و رشد کارخانه های بزرگ و کوچک با توانایی ساختن کالاهای همسان به مقدار زیاد، از یک سو به زوال صنایع دستی، روستایی و خانگی در مدت کوتاهی انجامید و از سوی دیگر، رقابت بین کارخانه داران را ایجاد کرد.
حسابداری صنعتی ابتدا بیشتر به گزارش بهای تمام شده محصولات بر مبنای اطلاعات مالی گذشته تاکید داشت و در پیش بینی اینده از حدس وگمان فراتر نمی رفت.
اما بزرگتر شدن کارخانه ها و پیچیده تر شدن روشهای تولید و در نتیجه افزایش تولیدات، رقابت بین واحدهای صنعتی را برای تسلط بر بازارهای پیوسته ملی و همچنین رقابت در عرضه تولیدات به بازارهای جهانی تشدید کرد و اداره موسسات بزرگ پیچیده به پیدایش مفهوم مدیریت علمی انجامید. مدیریت علمی، روش برخورد منظم و منطقی با مسایل به منظور یافتن بهترین راه برای انجام هر کار است.
وجود رقابت، نیاز به آگاهی از بهای تمام شده محصول را ایجاب نمود و در پاسخ به این ضرورت نوعی دفترداری صنعتی یا دفترداری هزینه یابی که بعدها حسابداری صنعتی نامیده شد، ابداع گردید.
علاوه بر این، در گذر زمان تکنیکهای گزارش اطلاعات مالی برای تصمیم گیریهای مدیریت تکامل یافت و با ارایه و توضیح مدلهای مقداری، امکان اتخاذ تصمیمات درست بر اساس اطلاعات موجود، تسهیل گردید. امروزه این رشته از حسابداری به معنای اعم حسابداری مدیریت نامیده می شود.

بازار سرمایه و شرکتهای سهامی

با بزرگتر شدن شرکتها نیاز به توسعه و همچنین سرمایه بیشتر احساس شد. لذا با بهره گیری از دو دستاورد بزرگ و مفید سرمایه داری صنعتی یعنی سازماندهی و همکاری، موجبات رشد، توسعه و تکامل شرکتهای سهامی فراهم و با سازمان یافتن بازار سرمایه، تامین مالی طرحهای بزرگ صنعتی امکان پذیر شد.
بازار سرمایه و شرکتهای سهامی این امکان را فراهم آورد که تعداد زیادی از صاحبان سرمایه، با سرمایه های کوچک و بزرگ در یک واحد اقتصادی مشارکت کنند و به این ترتیب مشکلات تامین سرمایه های کلان برای ایجاد ساختمان، خرید ماشین آلات و احداف تاسیسات یک کارخانه بزرگ یا طرح بزرگ صنعتی برطرف گردید.
در عین حال، محدودیت مسولیت صاحبان سهام به مقدار سرمایه ای که در شرکت گذاشته اند و قابلیت انتقال سهام، به رونق سرمایه گذاری و گسترش بازارهای سازمان یافته سرمایه انجامید.
در ادامه فرایند رشد و توسعه شرکتهای سهامی، هییت مدیره شرکتهای سهامی بزرگ، کار مدیریت اجرایی را به مدیران موظفی که برای اداره امور شرکت بر می گزینند محول و خود به تعیین خط مشی های اجرایی شرکت و نظارت بر کار مدیران می پردازند. این تحول، گروه تازه ای از مدیران کارآزموده حرفه ای را پدید آورد که در سرمایه موسساتی که اداره می کنند سهمی ناچیز دارند یا اصولا سهمی ندارند، بدین ترتیب غالبا مدیریت موسسات از مالکیت آنها تفکیک و متمایز گردید.
سازمان جدید سرمایه، نقش شرکتهای سهامی و بورسهای اوراق بهادار بعد تازه ای به حسابداری بخشید و ان لزوم ارایه گزارشهای مالی به سهامداران برای آگاه کردن آنان از چگونگی اداره سرمایه هایشان، ارزیابی عملکرد و سنجش کارایی مدیران و گردانندگان شرکت و بالاخره آینده سرمایه گذاریشان بود.

حسابداری حرفه ای و حسابرسی

افزایش موارد استفاده و شمار استفاده کنندگان از اطلاعات مالی، وظیفه حسابداران را از رفع نیازهای معدودی صاحب سرمایه به پاسخگویی به نیازهای مراجع و گروههای متعدد ذینفع و ذیعلاقه، ارتقا داد و به آن نقشی اجتماعی بخشید.
وظیفه نوین حسابداری را حسابداران شاغل در موسسات نمی توانستند به تنهایی انجام دهند زیرا وجود رابطه استخدامی مستقیم آنان را به پذیرش نظرات مدیران واحدهای اقتصادی در تهیه صورتهای مالی ناگزیر می کرد و از طرفی اشتغال آنان در موسسات، نوعی جانبداری طبیعی از آن موسسات را در پی داشت.
حال آنکه صورتهای مالی باید نیازهای گروههای مختلف استفاده کننده با علایق و منافع متفاوت و احتمالا متضاد را برطرف می کرد.
برای آن که گروههای مختلف استفاده کننده بتوانند به صورتهای مالی تهیه شده توسط موسسات اعتماد بیشتری نمایند، حسابداران خبره ای انتخاب شدند و وظیفه یافتند که با رسیدگی به مدارک اسناد و حسابها هر گونه تقلب و سوء استفاده را کشف و نسبت به صورتهای مالی بی طرفانه اضهار نظر کنند و این کار حسابرسی نامیده شد.
حسابرسی به معنای عام یعنی رسیدگی به حسابها از لحاظ کشف تقلب و سو استفاده سابقه طولانی دارد و در طول تاریخ همیشه نوعی حسابرسی در موسسات دولتی و خصوصی وجود داشته است، اما حسابرسی به معنای نوین یعنی رسیدگی و اظهار نظر نسبت به صورتهای مالی به دنبال رشد و پیدایش شرکتهای سهامی که در ان مسولیت سهامداران محدود به مقدار سرمایه ای بود که در شرکت گذاشته بودند، بوجود آمد و زادگاه آن انگلستان است.
اما تغییر شگرفی که اکنون در جریان است، تحول حسابرسی از حسابرسی مالی به حسابرسی جامع است که در آن علاوه بر رسیدگی و گزارش نسبت به صورتهای مالی واحد مورد رسیدگی، عملیات و معاملات آن از لحاظ رعایت سیاستهای مقرر شده توسط مراجع تصمیم گیرنده ( مانند مجمع عمومی) و رعایت قوانین و مقررات حاکم بر فعالیت واحدهای اقتصادی رسیدگی می شود و کارایی مدیریت واحد مورد رسیدگی از لحاظ چگونگی استفاده از منابع موجودد و نحوه اجرای برنامه و عملیات ونتایج حاصل از ان سنجیده و گزارش می شود. این گونه حسابرسی که جنبه اخیر آن حسابرسی مدیریت نامیده می شود عمدتا در مورد شرکتهای بزرگ که منابع کلان و حیطه فعالیت گسترده ای دارند و مدیریت آن از مالکیت سرمایه جداست در پاسخ به ضرورت ارزیابی عملکرد مدیریت این گونه موسسات توسط متخصصین با صلاحیت (حسابداران و متخصیصینی از رشته های دیگر) اجرا می شود و چشم انداز تکامل حسابداری حرفه ای است.

تکامل ریاضیات کاربردی و سنت نظری

از زمانی که در یونان باستان، عنصر « استدلال » وارد ریاضیات شد، سنت ساختمان نظری – استدلالی دانش ریاضی به وجود آمد؛ سنتی که در تمام تاریخ بعدی ریاضیات دنبال شده است. البته از نظر تاریخی ، عقب نشینی از« ایده آل های » ساختمان نظری دانش ریاضی هم دیده می شود.
این برگشت از نظریه و جهت گیری کاربردی را می توان در ریاضیات سده های میانه (به ویژه در ایران ) دید که بیش از هزار سال دوام داشت و زمینه را برای دوران جدید ریاضیات نظری فراهم کرد. بعد از شعله های درخشان نظری در ریاضیات باستان و دوران هلنیم؛ دیگر ممکن نبود روش خاص کاربردی نخستین، دوباره زنده شود .دانش ریاضی سده های میانه؛ برایندی از سنت نظری و سمت گیری کاربردی است . نتیجه این «سنتز» مرحله ای بعدی ریاضی کاربردی است. که نسبت به ریاضیات مصر و میان دو رود، در سطح بالاتری قرار دارد.
این تصور که زمانی گمان می کردند، «وزن مخصوص» ریاضیات نظری در طول تاریخ ،به طور دائم رو به افزایش بوده است،مدت هاست که دیگر وجود ندارد. این تصور به این دلیل پیدا شده بود که به ریاضی ایرانی کم بها می دادند.«…ریاضیات عربی به هیچ وجه به معنای ریاضیات عرب ها نیست، همان طور که نوشته های لاتینی فرمای فرانسوی توریچلی ایتالیای، نیوتن انگلیسی، لایب نیتس آلمانی و اولر که در آکادمی روسیه کار می کرد را می توان دانش لاتینی نامید. درواقع، اصطلاح نادرست ریاضیات عربی، به معنای موقعیت های دانشمندان ملت های گوناگون است… که چه در زمینه های ریاضیات و چه در دانش های دیگر، در طول بیش از پانصد سال از سده نهم تا سده پانزدهم میلادی، پیشتاز بوده اند. آن ها بیش تر از آسیای میانه و نزدیک و به ویژه از ایران (قفقاز، خوارزم، خراسان،…) برخاسته اند.به اصطلاح، ریاضیات عربی را باید بیشتر متعلق به ملت های آسیای میانه و خراسان بزرگ دانست .»
((- آ.پ.یوسکدویچ، در کتاب : درباره ریاضیات ملت های آسیای میانه، در سده های نهم تا پانزدهم-))
حقیقت نشان می دهد که بر خلاف تصور قبلی عده ای از تاریخ نویسان، ریاضیات «عربی» تنها «حلقه ارتباطی » نبوده که ریاضیات نظری یونانی را حفظ کرده است و بدون این که چیزی به آن اضافه کند،این ارثیه را به اروپاییان تحویل دهد. روشن شده است که ریاضیات اروپای سده های میانه، از نظر ساختاری شبیه ریاضیات کشورهای شرق بوده ومجموعه آن ها، خیلی نیرومندتر از ریاضیات یونانی به سمت ریاضیات کاربردی گرایش داشته است .
به طور کلی می توان درباره مرحله تازه ای از تکامل ریاضیات صحبت کرد. در این دوران می توان مساله ها، موضوع ها و دانش هایی از ریاضیات را دید که آن را از دوران قبل از خود مشخص می کند.
باید گفت که بسیاری از نوشته های فلسفی مربوط به ریاضیات به آن دوره تکامل ریاضیات که بسیار اساسی است و بی اندازه اهمیت دارد، به اندازه کافی بها داه نشده و نیرو و پتانسیل روش شناختی که خاص ریاضیات سده های میانه است، بازتاب مناسب خود را پیدا نکرده است.
درضمن، مولفان به نقش عمده روش شناسی ریاضیات تکیه می کنند که نوشته آندره کولمر گمروف، با عنوان «ریاضیات » (۱۹۵۴) درباره آن صحبت شده است. بنابر آن، ریاضیات نظری یونان باستان و کشورهای هنلیستی (که آراسته به ساختمان اصل موضوعی بود) در ریاضیات سده های میانه (تا سال ۳۰سده هفدهم ) به دوره ریاضیات مقدماتی مربوط می شوند. درریاضیات مقدماتی، ریاضیات نظری و ریاضیات کاربردی که دانش ریاضی را به سمت منظم شدن هدایت می کند، در هم ادغام شده اند و به عنوان حالتی واحد و یگانه مورد تفسیر قرار می گیرند که در آن جنبه نظری ریاضیات برتری دارد . به دنبال دوره ریاضیات مقدماتی، دوره ریاضیات با کمیت های متغیر می آید (تا میانه سده نوزدهم ) که دیگر به روشنی خصلت نظری دارد.
داده های تازه ما را وا می دارد به جریان تکامل ریاضیات، به گونه دیگری بنگریم. به ویژه کارهای ارشمیدس و آپولونیوس ،به روشنی از مرزهای ریاضیات مقدماتی فراتر رفته اند. در حالی که ریاضیات سده های میانه، بیش تر با ریاضیات کاربردی دوران قبل از یونان خویشاوند است. ولی در کتاب هایی که درباره ای فلسفه و روش شناسی ریاضیات نوشته شده اند، حقیقت های تازه مورد ارزیابی درست قرار گرفته اند و بازتاب کافی نیافته اند. اُ.ای. کدروسی در مقدمه کتاب خود به نام «مسأله های روش شناختی تکامل ریاضیات » (۱۹۷۷)، یادآوری می کند که دوره های تاریخی تکامل ریاضیات را، بر اساس تقسیم بندی کولموگوروف درنظر گرفته است.
کم بها دادن به اندیشه متفکران ریاضی سده های میانه در «مقاله هایی درباره تاریخ ریاضیات »اثر نیکل بورباکی هم منعکس شده است و از یادگارهای سده های میانه تنها از۱۲نوشته نام آورده شده است که در ضمن، هیچ کدام از آن ها «عربی» نیستند .
گرایش های امروزی در تکامل ریاضیات را تنها وقتی می توان فهمید که ازتقسیم نادرست تکامل ریاضیات صرف نظر کنیم، تقسیمی که تنها جنبه هایی از آن را، با نفی دیگری در نظر می گیرد ودور نمایاند که پیشرفت ریاضیات روی خط پیوسته ای از یونان باستان تا زمان حاضر حرکت کرده است. توجه اغراق آمیز به مسیر نظری ریاضیات و کم توجهی به ریاضیات کاربردی، به تحریف تصور ما از دانش ریاضی منجر می شود ودر تقسیم بندی مسائل فلسفی – روش شناختی بر مسائل مربوط به روش قیاسی، ساختمان های ترکیبی و پایه های اصل موضوعی دانش ریاضی منجر می شود. نقطه اوج درکتاب های مربوط به مسأله های فلسفی ریاضیات، به طور معمول در بررسی موقعیت های شکل گیری نظری ریاضیات است: روش اصل موضوعی و تکامل آن، و از آن جمله پارادکس های ساختمان نظری ریاضیات بر پایه مجموعه ها و عکس العمل فلسفی روش شناختی در برابر این پارادکس ها، و بر این اساس، درواقع ،نقش خاص عمل در تکامل ریاضیات، به فراموشی سپرده می شود.این موقعیت در بیان نامه ی بورباکی، درباره شکل گرفتن دانش ریاضیات نظری بازتاب یافته است: « این که بین پدیده های تجربی و ساختارهای ریاضی، بستگی نزدیکی وجود دارد و این که به صورتی نامنتظر با کشف های فیزیک معاصر تأیید می شود، برای ما دلیل های واقعی این علت ها معلوم نیست و به احتمالی هرگز هم معلوم نخواهد شد» ((- بورباکی. – مقاله هایی درباره تاریخ ریاضیات - )) و تا زمانی که علت های پنهانی راکه درریاضیات کاربردی وجود دارد وموجب نیروی تاریخی ساختارهای نظری دوره بعد شده است، از نظر دور داشته باشیم، نمی توانیم این « تردید » را از خود دور کنیم.
ارزیابی مسأله های اصلی فلسفی و روش شناختی دانش ریاضی درسده های میانه را، باید در جای دیگری به دست آورد. که عبارت است از واکنش نسبت به تکامل و تصحیح میانه ریاضیات این دوران – مسأله ای که در برابر ریاضیات امروزی هم قرار دارد. تأثیر فعالیت های عملی بر جهت گیری تکامل ریاضیات، به صورت های متفاوتی در دوره های مختلف نمایان می شود.
سنتز سنت های نظری و سمت گیری کاربردی را در ریاضیات سده های میانه، می توان در دو زمینه بررسی کرد. اگر از جنبه خاص به این موضوع بنگریم، به هم آمیختگی سنت نظری و جهت گیری کاربردی، به کمک تنظیم آ گاهی های ریاضی با روش محاسبه ای و الگوریتمی تحقق می یابد . هسته مرکزی این شکل گیری تازه دانش و ریاضی، الگوریتم محاسبه ای است که نسبت نظری (نسبت تنظیم آگاهی ها به کمک استدلال) را تثبیت می کند و در عین حال، عمل های لازم را برای جهت گیری کاربردی ریاضیات، به بهترین صورت خود در می آورد.
براساس تصور یگانه ای که درباره ریاضیات به عنوان یک دانش کاربردی وجود دارد، آگاهی های ریاضی پیش می رود و تکامل می یابد. واین دلیل عینی کلی تر روش شناختی است، کلیتی که با آن دوره فعالیت آن گروه اجتماعی که ریاضیات راحفظ و از آن استفاده می کند، تحکیم می شود در کارهای روش شناختی درباره موضوع روش های ریاضیات در اساس خود، نتیجه ای است از فعالیت های گروه های اجتماعی که در روند به وجود آوردن آگاهی ها دخالت دارند. سنتز سنت نظری «استدلال» و سمت گیری کاربردی دانش ریاضی، به صورت بازتابی از «طبقه اجتماعی » در می آید. برعکس، آن برخورد روش شناختی درباره ریاضیات، برخوردی که فعالیت گروه اجتماعی را به حساب می آورد و امکان یکی شدن اثبات و محاسبه را فراهم می آورد، به نوبه خود بر ساز و کار تکامل دانش، تأثیر می گذارد و حلقه های متفاوت آنرا بیش تر و محکم تر به هم نزدیک می کند. در نتیجه ریاضیات سده های میانه، همچون مجموعه کاملی که سمت گیری کاربردی دارد، مصرف می شود. دانشی که به صورت واحد کاملی درک می شود و تصور همگون و یکپارچه ای درباره موضوع ریاضیات به ما می دهد.

تاریخچه عدد صفر

یکی از معمول ترین سیوالهایی که مطرح می شود این است که: چه کسی صفر را کشف کرد؟ البته برای جواب دادن به این سیوال بدنبال این نیستیم که بگوییم شخص خاصی صفر را ابداع و دیگران از آن زمان به بعد از آن استفاده می کردند.
اولین نکته شایان ذکر در مورد عدد صفر این است که این عدد دو کاربرد دارد که هر دو بسیار مهم تلقی می شود یکی از کاربردهای عدد صفر این است که به عنوان نشانه ای برای جای خالی در دستگاه اعداد (جدول ارزش مکانی اعداد) بکار می رود. بنابراین در عددی مانند ۲۱۰۶ عدد صفر استفاده شده تا جایگاه اعداد در جدول مشخص شود که بطور قطع این عدد با عدد ۲۱۶ کاملاً متفاوت است. دومین کاربرد صفر این است که خودش به عنوان عدد بکار می رود که ما به شکل عدد صفر از آن استفاده می کنیم.
هیچکدام از این کاربردها تاریخچه پیدایش واضحی ندارند. در دوره اولیه تاریخ کاربرد اعداد بیشتر بطور واقعی بوده تا عصر حاضر که اعداد مفهوم انتزاعی دارند. بطور مثال مردم دوران باستان اعداد را برای شمارش تعداد اسبان، … بکار می برند و در اینگونه مسایل هیچگاه به مسیله ای برخورد نمی کردند که جواب آن صفر یا اعداد منفی باشد.
بابلیها تا مدتها در جدول ارزش مکانی هیچ نمادی را برای جای خالی در جدول بکار نمی بردند. می توان گفت از اولین نمادی که آنها برای نشان دادن جای خالی استفاده کردن گیومه (”) بود. مثلاً عدد۶″۲۱ نمایش دهنده ۲۱۰۶ بود. البته باید در نظر داشت که از علایم دیگری نیز برای نشان دادن جای خالی استفاده می شد ولیکن هیچگاه این علایم به عنوان آخرین رقم آورده نمی شدندبلکه همیشه بین دو عدد قرار می گیرند بطور مثال عدد “۲۱۶ را با این نحوه علامت گذاری نداریم. به این ترتیب به این مطلب پی می بریم که کاربرد اولیه عدد صفر برای نشان دادن جای خالی اصلاً به عنوان یک عدد نبوده است.
البته یونانیان هم خود را از اولین کسانی می دانند کهدرجای خالی ,صفر استفاده می کردند اما یونانیان دستگاه اعداد (جدول ارزش مکانی اعداد) مثل بابلیان نداشتند. اساساً دستاوردهای یونانیان در زمینه ریاضی بر مبنای هندسه بوده و به عبارت دیگر نیازی نبوده است که ریاضی دانان یونانی از اعداد نام ببرند زیر آنها اعداد را بعنوان طول خط مورد استفاده قرار می دادند.
البتهبعضى ازریاضی دانان یونانی ثبت اطلاعات نجومی را بر عهده داشتند. در این قسمت به اولین کاربرد علامتی اشاره می کنیم که امروزه آن را به این دلیل که ستاره شناسان یونانی برای اولین بار علامت ۰ را برای آن اتخاذ کردند، عدد صفر می نامیم. تعداد معدودی از ستاره شناسان این علامت را بکار بردند و قبل از اینکه سرانجام عدد صفر جای خود را بدست آورد، دیگر مورد استفاده قرار نگرفت و سپس در ریاضیات هند ظاهر شد.
هندیان کسانی بودند که پیشرفت چشمگیری در اعداد و جدول ارزش مکانی اعداد ایجاد کردند هندیان نیز از صفر برای نشان دادن جای خالی در جدول استفاده می کردند.
اکنون اولین حضور صفر را به عنوان یک عدد مورد بررسی قرار می دهیم اولین نکته ای که می توان به آن اشاره کرد این است که صفر به هیچ وجه نشان دهنده یک عدد بطور معمول نمی باشد. از زمانهای پیش اعداد به مجموعه ای از اشیاء نسبت داده می شدند و در حقیقت با گذشت زمان مفهوم صفر و اعداد منفی که از ویژگیهای مجموعه اشیاء نتیجه نمی شدند، ممکن شد. هنگامیکه فردی تلاش می کند تا صفر و اعداد منفی را بعنوان عدد در نظر بگیرید با این مشکل مواجه می شود که این عدد چگونه در عملیات محاسباتی جمع، تفریق، ضرب و تقسیم عمل می کند. ریاضی دانان هندی سعی بر آن داشتند تا به این سیوالها پاسخ دهندو در این زمینه نیز تا حدودى موفق بوده اند .
این نکته نیز قابل ذکر است که تمدن مایاها که در آمریکای مرکزی زندگی می کردند نیز از دستگاه اعداد استفاده می کردند و برای نشان دادن جای خالی صفر را بکار می برند.
بعدها نظریات ریاضی دانان هندی علاوه بر غرب، به ریاضی دانان اسلامی و عربی نیز انتقال یافت. فیبوناچی، مهمترین رابط بین دستگاه اعداد هندی و عربی و ریاضیات اروپا می باشد.
یکی از معمول ترین سیوالهایی که مطرح می شود این است که: چه کسی صفر را کشف کرد؟ البته برای جواب دادن به این سیوال بدنبال این نیستیم که بگوییم شخص خاصی صفر را ابداع و دیگران از آن زمان به بعد از آن استفاده می کردند.
اولین نکته شایان ذکر در مورد عدد صفر این است که این عدد دو کاربرد دارد که هر دو بسیار مهم تلقی می شود یکی از کاربردهای عدد صفر این است که به عنوان نشانه ای برای جای خالی در دستگاه اعداد (جدول ارزش مکانی اعداد) بکار می رود. بنابراین در عددی مانند ۲۱۰۶ عدد صفر استفاده شده تا جایگاه اعداد در جدول مشخص شود که بطور قطع این عدد با عدد ۲۱۶ کاملاً متفاوت است. دومین کاربرد صفر این است که خودش به عنوان عدد بکار می رود که ما به شکل عدد صفر از آن استفاده می کنیم.
هیچکدام از این کاربردها تاریخچه پیدایش واضحی ندارند. در دوره اولیه تاریخ کاربرد اعداد بیشتر بطور واقعی بوده تا عصر حاضر که اعداد مفهوم انتزاعی دارند. بطور مثال مردم دوران باستان اعداد را برای شمارش تعداد اسبان، … بکار می برند و در اینگونه مسایل هیچگاه به مسیله ای برخورد نمی کردند که جواب آن صفر یا اعداد منفی باشد.
بابلیها تا مدتها در جدول ارزش مکانی هیچ نمادی را برای جای خالی در جدول بکار نمی بردند. می توان گفت از اولین نمادی که آنها برای نشان دادن جای خالی استفاده کردن گیومه (”) بود. مثلاً عدد۶″۲۱ نمایش دهنده ۲۱۰۶ بود. البته باید در نظر داشت که از علایم دیگری نیز برای نشان دادن جای خالی استفاده می شد ولیکن هیچگاه این علایم به عنوان آخرین رقم آورده نمی شدندبلکه همیشه بین دو عدد قرار می گیرند بطور مثال عدد “۲۱۶ را با این نحوه علامت گذاری نداریم. به این ترتیب به این مطلب پی می بریم که کاربرد اولیه عدد صفر برای نشان دادن جای خالی اصلاً به عنوان یک عدد نبوده است.
البته یونانیان هم خود را از اولین کسانی می دانند کهدرجای خالی ,صفر استفاده می کردند اما یونانیان دستگاه اعداد (جدول ارزش مکانی اعداد) مثل بابلیان نداشتند. اساساً دستاوردهای یونانیان در زمینه ریاضی بر مبنای هندسه بوده و به عبارت دیگر نیازی نبوده است که ریاضی دانان یونانی از اعداد نام ببرند زیر آنها اعداد را بعنوان طول خط مورد استفاده قرار می دادند.
البته بعضى ازریاضی دانان یونانی ثبت اطلاعات نجومی را بر عهده داشتند. در این قسمت به اولین کاربرد علامتی اشاره می کنیم که امروزه آن را به این دلیل که ستاره شناسان یونانی برای اولین بار علامت ۰ را برای آن اتخاذ کردند، عدد صفر می نامیم. تعداد معدودی از ستاره شناسان این علامت را بکار بردند و قبل از اینکه سرانجام عدد صفر جای خود را بدست آورد، دیگر مورد استفاده قرار نگرفت و سپس در ریاضیات هند ظاهر شد.
هندیان کسانی بودند که پیشرفت چشمگیری در اعداد و جدول ارزش مکانی اعداد ایجاد کردند هندیان نیز از صفر برای نشان دادن جای خالی در جدول استفاده می کردند.
اکنون اولین حضور صفر را به عنوان یک عدد مورد بررسی قرار می دهیم اولین نکته ای که می توان به آن اشاره کرد این است که صفر به هیچ وجه نشان دهنده یک عدد بطور معمول نمی باشد. از زمانهای پیش اعداد به مجموعه ای از اشیاء نسبت داده می شدند و در حقیقت با گذشت زمان مفهوم صفر و اعداد منفی که از ویژگیهای مجموعه اشیاء نتیجه نمی شدند، ممکن شد. هنگامیکه فردی تلاش می کند تا صفر و اعداد منفی را بعنوان عدد در نظر بگیرید با این مشکل مواجه می شود که این عدد چگونه در عملیات محاسباتی جمع، تفریق، ضرب و تقسیم عمل می کند. ریاضی دانان هندی سعی بر آن داشتند تا به این سیوالها پاسخ دهندو در این زمینه نیز تا حدودى موفق بوده اند .
این نکته نیز قابل ذکر است که تمدن مایاها که در آمریکای مرکزی زندگی می کردند نیز از دستگاه اعداد استفاده می کردند و برای نشان دادن جای خالی صفر را بکار می برند.
بعدها نظریات ریاضی دانان هندی علاوه بر غرب، به ریاضی دانان اسلامی و عربی نیز انتقال یافت. فیبوناچی، مهمترین رابط بین دستگاه اعداد هندی و عربی و ریاضیات اروپا می باشد.

ریاضیات محض و کاربردی

ماهیت کار
ریاضی یکی از قدیمی ترین و پایه ای ترین رشته های علوم است . ریاضی دانان از نظریه های ریاضی , روشهای محاسبه , آلگوریتمها و آخرین دستاوردهای رایانه ای برای حل مسائل اقتصادی , علمی , مهندسی , فیزیک و تجاری استفاده می کنند.کار ریاضی دانان به دو بخش گسترده تقسیم می شود . ریاضی محض و ریاضی کار بردی . این دو گروه کاملا از یکدیگر قابل تمایز نبوده و اغلب بایکدیگرهمپوشانی دارند. ریاضی دانان محض(نظری) با گسترش مبانی جدید و تشخیص روابط کشف نشده میان قوانین موجود ریاضی باعث گسترش دانش ریاضی می شوند . اگرچه آنان به دنبال گسترش دانش پایه بوده بی آنکه لزوما موارد کاربردی آنرا بررسی کنند ، چنین دانش مطلقی , نوعی راهبرد مفید در ایجاد وپیشبرد بسیاری از دستاوردهای مهندسی و علمی بوده است.
بسیاری از ریاضیدانان محض به عنوان استاد در دانشگاه ها استخدام شده و زمان کاری خود را بین تدریس و امور تحقیقی تقسیم می کنند.
از طرف دیگر، ریاضی دانان کاربردی با بهره گیری از نظریات و روشهای ریاضی مانند روشهای محاسبه و مدل سازی ریاضی به فرمولبندی وحل مسائل عملی در امور تجاری , دولتی , مهندسی و درعلوم اجتماعی، فیزیک و امور مربوط به زندگی می پردازند . به عنوان مثال , برای برنامه ریزی درخطوط هوایی میان شهر ها , بررسی اثر ومیزان ایمنی داروهای جدید , خصوصیات آیرودینامیکی پیش مدل اتومبیل ها و مقرون به صرفه بودن روشهای دیگر تولید به تجزیه و تحلیل کار آمدترین راه می پردازند.
امکان دارد ریاضی دانان کاربردی که دست اندر کار تحقیق و گسترش صنعتی هستند با حل مسائل مشکل باعث ایجاد یا تقویت روشهای ریاضی شوند .گروهی از ریاضی دانان به نام رمزیاب به تجزیه و تحلیل و کشف سیستمهای رمزی می پردازند که به صورت کد بوده واز طریق آنها اطلاعات نظامی , سیاسی , مالی یا اجرایی و قانونی رد و بدل می شود.
ریاضی دانان کاربری با یک مساله کاربردی شروع کرده , اجزای تفکیک شده عملیات مورد نظر را در فکر مجسم می کنند و سپس اجزا را به متغیر های ریاضی تبدیل می کنند.
ریاضی دانان غالبا با نمونه سازی توسط راه حلهای فرعی ، بوسیله رایانه به تجزیه و تحلیل روابط میان متغیرها و حل مسائل پیچیده می پردازند.
قسمت اعظم کار در ریاضی کار بردی به وسیله افراد با عنوانی غیر از ریاضی دان انجام می شود . در حقیقت ، از آنجائیکه ریاضی شالوده ایست که بر اساس آن بسیاری ازرشته های علمی بنا می شود شمار افرادی که از فنون ریاضی بهره می گیرند بیشتر از کسانیست که رسما" به عنوان ریاضی دان شناخته میشوند .
به عنوان مثال , مهندسان , دانشمندان علوم رایانه , فیزک دانان و اقتصاد دانان از جمله کسانی هستند که به شکل وسیعی از علم ریاضی بهره می جویند. گروهی از افراد متخصص مانند آماردانان , آمارگیران , تحلیل گران محقق در عملیات , در حقیقت در شاخه خاصی از ریاضی متخصص می باشند . بسیار پیش میاید که ریاضی دانان کاربردی برای دستیابی به راه حلهایی در مسائل گوناگون با افراد دیگر شاغل در سازمان همکاری کنند .
محیط کار ریاضی دانان غالبا"در دفاتر راحت کار میکنند .آنها اغلب جزئی از یک تیم متشکل از متخصصین علوم مختلف که ممکن است شامل اقتصاددانان , مهندسان , دانشمندان علوم رایانه ای , فیزیک دانان , تکنسین ها و دیگر افراد باشد .تحویل به موقع پروژه ها , اضافه کاری , تقاضاهای خاص برای اطلاعات یا تجزیه و تحلیل و مسافرتهای طولانی به منظور شرکت در سمینارها یا کنفرانسها جزئی از شغل آنان محسوب می شود . ریاضی دانانی که در دانشگاهها مشغول به کارند معمولا"در زمینه تدریس و تحقیق مسئولیتهایی بر عهده دارند. این افراد اغلب یا به تنهایی امور تحقیقاتی را اداره می کنند و یا ازهمیاری دانشجویان فارغ التحصیل و علاقه مند به موضوعات تحقیقی بهره مند می شوند.
فرصتهای شغلی
بیشترین فرصتهای شغلی در سرویسهای تحقیقی و آز مایشی , آموزشی , امنیتی , سیستمهای تبادل کالا ، مدیریتی و روابط عمومی وجود دارد . دربین مراکز تولیدی ، صنایع هوا فضا و دارویی اصلیترین استخدام کننده ها میباشند . گروهی از ریاضی دانان نیزدر بانکها و یا شرکتهای بیمه مشغول به کارند.
آموزش و ادامه تحصیل بسیاری از فرصتهای شغلی که در کارهای پژوهشی برای ریاضیدانان در نظر گرفته میشود بصورت عضوی از یک تیم حرفه ای می باشد . دانشمندان محقق در چنین مشاغلی یا در زمینه تحقیقات پایه و مبانی نظری و یا در تحقیقات عملی برای ایجاد یا بهبود فرایند تولید مشغول به کار می شوند . اکثر افرادی که دارای مدرک لیسانس یا فوق لیسانس بوده و در صنایع خصوصی کار میکنند , نه به عنوان ریاضی دان بلکه بعنوان برنامه نویس رایانه , تحلیل گر سیستم یا مهندس سیستم رایانه ای مشغول به کارند.
دوره های ریاضی مورد نیاز این مدرک شامل حساب دیفرانسیل , معادلات تفاضلی و جبر خطی و انتزاعی می باشد . دوره های اضافی میتواند نظریه های احتمالات و آمار , آنالیز ریاضی , آنالیز عددی , توپولوژی , ریاضیات گسسته و منطق ریاضی را در برگیرد .
بسیاری از دانشگاه ها برای دانشجویانی که در رشته ریاضی تحقیق می کنند , در زمینه رشته های مربوط به ریاضی مانند علوم رایانه ای , مهندسی , فیزیک و اقتصاد دوره هایی بر گذار می کنند . برای بسیاری از کار فرمایان ,آگاهی همزمان در ریاضی و علوم رایانه ای , اقتصاد یا دیگر علوم نوعی مزیت محسوب می شود . یک محصل ریاضی آینده نگر باید تا جایی که امکان دارد بسیاری از دروس ریاضی را در دبیرستان بیاموزد
در مورد ریاضیات کاربردی آموزش دیدن در زمینه هایی که قرار است ریاضی در آن به کار برده شود بسیار مهم است . ریاضی به شکل وسیعی در علوم فیزیک ,آمار , مهندسی مورد استفاده قرار می گیرد . علوم رایانه ای , تجاری , مدیریت صنعتی , اقتصاد , امور مالی , شیمی , زمین شناسی , علوم روزمره و اجتماعی وابسته به ریاضی کار بردی می باشند . ریاضی دانان باید در زمینه برنامه نویسی رایانه ای از اطلاعات جامعی برخوردار باشند چرا که اکثر محاسبات ریاضی پیچیده و مدل سازی ریاضی بوسیله رایانه انجام می شود.
ریاضی دانان نیاز به قدرت استدلال خوب و مداومت برای تشخیص ، آنالیز و به کار بردن مبانی ریاضی در مسائل فنی دارند . مهارتهای ارتباطی مهم می باشد چرا که ریاضی دانان بایستی در زمینه راه حلهای مطرح شده با افرادی وارد بحث شوند که احتمالا" اطلاع کافی ازعلم ریاضی ندارند.
چشم انداز کار
انتظار می رود که در آینده از میزان استخدام افراد به عنوان ریاضی دان کاسته شود چرا که مشاغل اندکی با نام علم ریاضی وجود خواهد داشت . هر چند دارندگان مدرک PHD و فوق لیسانس با اطلاعات جامعی در زمینه ریاضی و علوم مربوطه مانند مهندسی یا علوم رایانه ای احتمالا از فرصتهای شغلی مطلوب تری برخوردار خواهند بود . با این حال , بیشتر این افراد به جای عنوان ریاضی دان از عنوان کاری بر خوردار می شوند که نمایانگر شغل آنان می باشد . پیشرفت تکنولوژی معمولا باعث گسترش کاربرد علم ریاضی می شود و در آینده به افرادی که در این رشته مهارت یابند نیاز پیدا خواهیم کرد . با این وجود افرادی که در امور صنعتی یا دولتی مشغول به کار می شوند علاوه بر علم ریاضی در علوم مربوطه نیز به دانش پیشرفته ای نیاز خواهند داشت ریاضی دانان برای یافتن شغل باید با افرادی رقابت کنند که در علوم مربوط به رشته ریاضی تخصص دارند . موفق ترین جویندگان کارکسانی هستند که می توانند مبانی ریاضی را در مسائل واقعی زندگی بکار برده و از مهارتهای ارتباطی ,گروهی و رایانه ای مطلوبی بهره مند هستند .
در صورت نیاز سازمان آموزش و پرورش , اکثر دارندگان مدرک لیسانس می توانند به عنوان دبیر در مدارس مشغول بکار شوند.
رقابت کاری در میان دارندگان مدرک فوق لیسانس و در امور تحقیقی و نظری بسیار با لاست . از آنجایی که اکثر مشاغل دانشگاهی در اختیار دارندگان مدرک PHDاست , لذا بسیاری از فارغ التحصیلان رشته ریاضی , بدنبال استخدام در مشاغل دولتی یا صنعتی می باشند.

منابع:

پرویز شهریاری
لوباچفسکی، هندسه نااقلیدسی»، تالیف: و. کاگان، ترجمه پرویز شهریاری
هندسه های اقلیدسی و نااقلیدسی»، تالیف: ماروین جی. گرینبرگ، ترجمه محمدهادی شفیعیها
«هندسه لوباچفسکی» نوشته آ.س. اسموگورژفسکی، ترجمه احمد بیرشک
دایره المعارف بریتانیکا
مجله رشد برهان
سازمان آموزش و پرورش استان خراسان
-wikipedia , the free encydopedia
www.roshdmag.org
http://riazicenter.net
http://www.bedanid.com
www.knowclub.com
http://www.academist.i

نویسنده : زینب شعبانی تبار ; ساعت ۱٢:٠٧ ‎ب.ظ ; یکشنبه ۱٤ فروردین ،۱۳٩٠
تگ ها:
comment نظرات () لینک